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Summary in French

Analyse d’incertitude et conception optimale avancées en estimation
variationnelle (assimilation de données)

Le manuscrit du dossier d’Habilitation à Diriger des Recherches (HDR) s’intitule : ”Analyse
d’incertitude et conception optimale avancées en estimation variationnelle (assimilation de données)”,
par Igor Gejadze. Il est basé sur une série d’articles de l’auteur couvrant la période 2008-2017, qui
sont sélectionnés à partir de la liste de publication complète sur la base d’un sujet commun, comme
en témoigne le titre.

L’estimation d’état et / ou de paramètres pour les systèmes dynamiques à paramètres distribués
et à grande échelle est devenue une tâche de routine au cours des deux dernières décennies. C’est un
processus qui combine des observations, incomplètes et éventuellement indirectes de variables d’état,
avec un modèle mathématique gouverné par des équations aux dérivées partielles, complété par une
information a priori. Les applications comprennent l’initialisation de modèles en météorologie et
océanographie, la surveillance de la qualité de l’air ou de l’eau, le calage des modèles hydrogéologiques
ou de réservoirs pétroliers, l’estimation et la prévision des débits en hydrologie ou hydraulique fluviale,
l’estimation et le contrôle des écoulements en conception aéronautique, le contrôle des procédés dans
l’industrie chimique ou nucléaire, etc. Dans différentes applications, ces problèmes d’estimation sont
également appelés ”assimilation de données” (DA), ”calage” ou ”problèmes inverses”. L’estimation
variationnelle / DA est une méthode basée sur la théorie du contrôle optimal, qui repose sur le concept
de ”modèle adjoint”. Cette méthode est largement utilisée en géosciences. Par exemple, il s’agit
d’une méthode privilégiée pour la prévision météorologique et océanique dans les principaux centres
opérationnels du monde entier. La méthode a été récemment appliquée à l’hydraulique fluviale et à
l’hydrologie, et a été largement utilisée dans d’autres applications scientifiques et d’ingénierie, telles
que l’ingénierie aérospatiale, le traitement d’images astronomiques et biomédicales, etc.

La quantification de l’incertitude (UQ pour Uncertainty Quantification) et la conception optimale
sont des sujets importants étroitement associés à l’estimation (assimilation des données). Cependant,
dans le cadre de l’approche variationnelle, ces problèmes sont particulièrement difficiles à résoudre. Un
aperçu du travail original de l’auteur sur des méthodologies avancées pour l’UQ et la conception opti-
male est présenté dans les différents chapitres. L’accent est mis sur la faisabilité des méthodes suggérées
pour l’UQ et la conception en grande dimension, où les méthodes statistiques (Monte Carlo impliquant
des astuces ad hoc, comme par exemple la localisation, l’échantillonnage préférentiel, etc.) peuvent
échouer à produire un résultat raisonnable du fait du nombre très réduit d’échantillons disponibles.
Certaines des approches pourraient également être utiles pour améliorer les techniques d’estimation
elles-mêmes (en termes d’accélération, d’économies de mémoire et de robustesse).

Le Chapitre 1 contient une introduction générale à la théorie de l’estimation variationnelle et à la
méthode de quantification de l’incertitude utilisée dans ce cadre. Dans le Chapitre 2 cette méthode
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est généralisée au cas essentiellement non linéaire (méthode dite du ”effective inverse Hessian”) et
également considérée du point de vue de l’estimation Bayésienne. Ensuite, le Chapitre 3 contient
quatre nouvelles méthodes : une méthode pour évaluer la non-gaussianité des estimations (basée sur
le concept de ”mesure de coexistence”), une méthode pour calculer le gradient du critère d’optimisation
dans le problème de localisation de capteurs, une méthode de contrôle dite ”inactive” pour le traitement
des erreurs de modèle et de paramétrisation, et une méthode pour la conception optimale du vecteur
de contrôle actif. Enfin, le Chapitre 4 présente un nouveau concept de ”décomposition des valeurs
propres multi-niveaux”, utilisé pour la représentation super-compacte de l’inverse du Hessien et pour le
préconditionnement des itérations de Gauss-Newton. Pour chaque méthode, d’autres développements
sont suggérés.

En outre, ce manuscrit contient le CV de l’auteur et une brève description de ses activités de
recherche passées et à venir, qui sont beaucoup plus larges que les sujets reflétés dans le manuscrit.
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Contribution: 50%, joint supervision with P.-O. Malaterre (IRSTEA-Montpellier) and F. Mercier

(CNES).
Stage: in progress, to be completed by 10.2017.
Current position: engineer at IRSTEA-Montpellier.

Student: Kirsty L. Brown, 10.2012 - ... , at Dept. of Mathematics and Statistics, University of
Strathclyde

Thesis title: ”Efficient multigrid computation of the posterior covariance matrix in large-scale
variational data assimilation”.

Contribution: 50% , joint supervision with A. Ramage (University of Strathclyde).
Stage: This student is currently on a long-term medical leave.

Student: Hossam Mohamed El-Hanafy, 10.2005 - 10.2007 at Dept. of Civil Engineering, University
of Strathclyde.

Thesis title: ”Sensitivity and uncertainty analysis for flood wave propagation in river channels
using the adjoint method”.

Contribution: 50%, joint supervision with G.J.M. Copeland (University of Strathclyde).
Stage: defended in 2007.
Current position: lecturer at Egyptian Military College (MTC), Cairo.

Successful funding attempts:

05.2017: TOSCA CNES call 2017: Estimation des débits avec SWOT, FUNDED by CNES, 35000
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Past research in brief

2013-2016: Context: variational DA in hydrology
In this pilot work the potential of variational DA in hydrology has been assessed. In particular, the
tangent linear and adjoint counterparts for the well-known hydrological models GR4J and AIGA (in
collaboration with HYDRIS Hydrology) were generated; then, different DA problems (parameter es-
timation, state monitoring and forecasting) has been investigated in the identical twin experiment
framework. The results was presented in [C2], and also has been used for obtaining a PhD grant (to
be started in December 2017). The paper on this subject is currently in progress.

2005-2016: Context: control and variational DA in hydraulics
a) Coupling of 1D and 2D hydraulic models via optimal control, a joint data-assimilation/coupling
procedure implementing the idea of a ’2D-zoom’ over-posed model [A20]. In this work the 2D shallow
water model DASSFLOW was used, whereas its tangent linear and adjoint models has been obtained
by means of Automatic Differentiation.
b) Flood risk assessment for a 1D hydraulic model (full Saint-Venant equations) using analytically
derived adjoint equations for sensitivity analysis [A19].
c) Data assimilation involving the full Saint-Venant hydraulic network model (SIC) in the context
of SWOT (Surface Water and Ocean Topography) satellite mission [A1, A2, A5, A6]. Development
of the tangent linear and adjoint counterparts for the SIC model using Automatic Differentiation.
Development of a special robust procedure for discharge estimation under uncertainty in basic model
parameters including bathymetry and distributed Manning/Strickler coefficient. Application to dif-
ferent rivers (Garonne, Poo, Sacramento).

2006-2016: Context: optimal solution/estimation error quantification
”In variational DA, the analysis error covariance can be approximated by the inverse Hessian”: there
has always been some misconception and confusion about the true meaning of this statement. For
example, the following issues are not always correctly understood: the Hessian of which cost-function
is considered, at what point the Hessian is defined, what the quality of approximation depends on,
what is the difference between the ’analysis error covariance’ and ’posterior covariance’, etc. Papers
published during this period clarify most of these issues [A14, A15, A16, A17, A18, A21, A22]. How-
ever, in addition to its pedagogical value, this research offers some new ideas. In particular, a useful
concept of effective inverse Hessian is suggested in [A12, A10], also used in [A9]. The idea of a gen-
eralized particle, which is the Gaussian pdf (posterior state plus the corresponding inverse Hessian),
can be useful in particle methods.

2012-2016: Context: application of the Hessian in variational DA
Working around the Hessian issue resulted into the following new applications:
a) Efficient preconditioning for inner Gauss-Newton iterations in the framework of incremental 4D-Var.
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This preconditioning is based on the idea of Hessian decomposition in the observation space, combined
with a super-compact storage scheme achieved using the multilevel eigenvalue decomposition [A3].
b) Gradient-based design of optimal sensor location schemes. An efficient new method for computing
the gradient of the standard (alphabetical) design criteria via the Hessian derivative has been sug-
gested in [A11, A13]. This enables the gradient-based optimization methods (conjugate gradients,
quasi-Newton) to be used in the context of optimal experimental design.
c) Gauss-verifiability of optimal solutions in variational DA problems with nonlinear dynamics. A new
verification method presented in [A8] allows the gaussianity of the optimal solutions to be quantified.
An important advantage of this method is that it allows us to assess how the non-gaussian effects
are distributed in space. The method is computationally efficient and matrix-free, thus allowing high-
dimensional implementation.
d) Optimal control set design. A new method for ranking the active control subsets in terms of a
chosen performance measure has been suggested in [A5]. The method is computationally efficient
and matrix free. This is an important methodological advance in design of estimators for complex
multi-input systems, given most inputs contain significant uncertainties.
e) Design of robust estimators (robust with respect to the parametric uncertainty and the model error)
utilizing the ’nuisance parameter’ treatment ideas [A3].

2000-2003, 2012-2015: Context: multigrid/multilevel methods
Multigrid approach for control of systems governed by parabolic partial differential equations.
This work has been stopped after two years of research due to appearance of papers describing the
very similar approach, but at a more advanced stage (Borzi, 2003/2004). However, multigrid skills
obtained at this stage has been utilized later [A4]. Multilevel approach for computing the limited-
memory Hessian and its inverse in variational DA. In this work the concept of multilevel eigenvalue
decomposition for a symmetric positive-definite operator has been introduced, which is a new concept
in computational mathematics. In particular, it has been applied for computing the limited-memory
representation of the inverse Hessian and its square-root. However, it can be used in many other
applications where elliptic PDE operators are involved.

2003-2005: Context: variational DA for the coastal ocean model
Open-boundary control for Navier-Stokes equations including a free surface (NSFS); with application
to coastal circulation modeling [A23, A24, A25].
This was a collaborative work with the Imperial College (London), to enable data assimilation using
ICOM (the Imperial College Ocean Model), which is the finite-element adaptive-mesh model imple-
menting the full Navier-Stockes equations (i.e. non-barotropic). Due to its finite-element base, this
model is suitable for modeling of flow around very complex coastal lines and bed topographies. The
question was how to define the adjoint to the full NSFS model, i.e. how to derive the adjoint to the
problem defined in a variable domain dependent on the model variables? Instead of using the topolog-
ical derivative, the problem has been solved by using a change of variables shifting the problem into
a fixed domain. For this re-formulated problem the tangent linear and adjoint model are derived in a
conventional way, then the adjoint sensitivities mapped back into original variables. Moreover, it has
been shown that for the original NSFS formulation the adjoint does not exist and, therefore, cannot
be obtained by means of Automatic Differentiation.

1999-2000: Context: optimization of polymer extrusion technology
Heat flux estimation for coupled heat transfer/fluid flow model in extrusion of polymers.
The visco-plastic polymer flow model (2D with radial symmetry) coupled with the convection-diffusion
heat transfer model has been developed and used for the heat flux estimation at the extrusion die wall
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[A26]. This was a pioneering work which inspired several subsequent PhD’s at ISITEM (University of
Nantes).

1994-1999: Context: heat transfer in flight vehicle structures (PhD)
Design of algorithms for on-line diagnostics of transient heat fluxes and thermal states, with possible
application to the thermal protection systems (TPS). Main results of this work are presented in the
PhD thesis and published in [A27, A28, A29, A30, A31, A32]. The need for development such spe-
cialized algorithms was justified by the fact that for rapidly varying large-magnitude heat fluxes the
quality of Kalman estimates was not satisfactory. The suggested algorithms are based on the inverse
problems theory and exploit Tikhonov regularization.

1985-1991: Context: star-guidance for a supersonic jet
Numerical modeling of optical distortions in shock waves surrounding a supersonic jet and in the
atmosphere, i.e. analysis of refraction and dispersion of a light beam passing through: a) boundary
layer in the supersonic shear flow; b) turbulent atmosphere (using 1D-turbulent atmosphere model).
Development of an observation error model (dependent of the flight regime) and identification of its
parameters using data obtained during test flights.
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Research plans in brief

Context: advancing the methodology for UQ and control set design
This immediate-future research is described in detail in §2.3 and §3.4.7, where two new methods are
outlined. These methods should be implemented and verified numerically. Other plans in this direction
include a method for utilizing adjoint sensitivities in the framework of the global sensitivity analy-
sis. The purpose is to enable the uncertainty quantification and propagation for essentially nonlinear
models with the uncertainty-loaded high-dimensional inputs. The latter can be achieved by reducing
computational costs of a non-intrusive Polynomial Chaos method using the adjoint sensitivities (first
derivatives) and the limited-memory Hessians (second derivatives).

Context: variational DA in hydraulics
Assimilation of SWOT (Surface Water and Ocean Topography satellite mission) data for discharge and
water level estimation using the full Saint-Venant hydraulic model. The ultimate goal of the project
is to develop a piece of software which can eventually be included into the SWOT data processing
library. Further research in this direction includes the following:
a) Development of the unconditionally robust estimator. The level of robustness can be increased by
modifying the direct solver and by considering additional constraints (enforcing positiveness of depth,
for example) in the inverse/control problem formulation.
b) Development of a simplified test-case setup procedure, which has to allow for an inexperienced user
(both in hydraulics and DA).
c) Modeling the observation error with the SWOT Scientific Simulator (SS). Verification of the ade-
quacy of the error model implemented in the SWOT SS, using statistical analysis of residuals. Devel-
opment of algorithms for calibrating the SWOT SS error model.
d) Considering discharge estimation problem outside the Gaussian framework.
e) Improving the estimation accuracy. Here, the two difficulties are still presented: relatively large
period of SWOT observations and unaccounted time dependent and spatially distributed lateral in-
flows/offtakes. These issues cannot be resolved solely at the level of hydraulic modeling. Thus, we must
consider a joint hydraulic/hydrological models. For example, the characteristic time of a hydraulic
model could be smaller than the satellite revisiting period, in which case all events between observation
instants are not observable, whereas the characteristic time of a joint hydraulic/hydrological model
can become larger than the observation period. Thus, combining the SIC model with the existing
hydrological models (GR4J, AIGA) is also a subject of immediate future research. This is a basic idea
of the forthcoming PhD proposal to CNES (to be started 10.2017).

Context: variational DA in hydrology
Variational DA for large-scale distributed hydrological models (AIGA) and hydrological forecasting.
This is a subject of the forthcoming PhD (to be started 10.2017), where the following research direc-
tions will be considered:
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a) Estimating uncertainties in the model inputs (precipitation) and outputs (local discharge) by re-
analysis. At this step we decide whether or not the Gaussian framework is relevant. If not, we may
turn to the MAP estimator. Also, enforcing positiveness of certain model parameters and state vari-
ables.
b) Managing the implementation issues in high dimensions. Model reduction, possibly by using the
statistical learning approach.
c) Study of the hydrological predictability, given uncertainty in weather forecasts.
d) Design of optimal observation networks.
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Preface

State and/or parameter estimation for large-scale distributed parameters dynamical systems has be-
come a routine task in the past two decades. It is a fusion process of incomplete and, possibly, indirect
observations of state variables with a mathematical model governed by partial differential equations,
complemented by a priori information. The applications include model initialization in meteorol-
ogy and oceanography, air and water quality monitoring, ’calibration’ of groundwater and reservoir
models, discharge estimation and forecasting in river hydraulics and hydrology, flow estimation and
control in aerospace engineering, process control in chemical and nuclear engineering, etc. In differ-
ent applications these estimation problems are also referred as ’data assimilation’(DA), ’calibration’
and ’inverse problems’. Variational estimation/DA is a method based on the optimal control theory
([S32, S30]), which can also be understood as a special case of the maximum a-posteriory probability
(MAP) estimator ([S13]). This method is preferred for weather and ocean forecasting in major oper-
ational centers around the globe, particularly in the form of the incremental 4D-Var ([S11]), and in
the form of the ensemble 4D-Var ([S9]). Variational estimation is widely used in other scientific and
engineering applications, for example in aerospace engineering [S2], astronomical image processing
[S4], etc.

Uncertainty quantification (UQ) and optimal design are important topics closely associated with
estimation/DA. An overview of the original author’s work on advanced methodology for UQ and
optimal design in the framework of variational estimation is presented in the coming chapters. The
accent is made on feasibility of the suggested methods for the UQ and design in high-dimensions,
where the statistical methods (Monte Carlo involving associated tricks, e.g. localization, importance
sampling, etc.) may not produce a sensible outcome due to a very small sample being available. Some
of the approaches could equally be useful for improving (in terms of acceleration, memory savings and
robustness) the estimation/DA technique itself. This overview is based on selected papers from the
complete author’s bibliography.
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Chapter 1

Uncertainty quantification (UQ) in
variational estimation

1.1 Variational estimation: basic concept

Let us consider a mathematical (or numerical) model which describes behavior of a natural system
in terms of its state variables X ∈ X . Let U ∈ U be the set of the model inputs (controls), then the
model can be considered as a ’control-to-state’ mapping M : U → X , such that

X = M(U), (1–1)

where U and X are the input and state spaces, correspondingly. For modeling the system behavior
the true input vector Ū must be specified. Under the ’perfect model’ assumption the following can be
postulated: X̄ = M(Ū). In reality, some components of Ū contain uncertainties ε ∈ U . Thus, instead
of Ū we use its best available approximation (background/prior)

U∗ = Ū + ε, (1–2)

where ε is also called the background error. Because of the presence of ε, the predicted state X|U∗ =
M(U∗), that is, X evaluated (or conditioned) on U∗, also contains an error δX = M(U∗)−M(Ū ).

The state observing tools are represented by an observation operator C : X → Y in the form

Y = C(X) = C(M(U)) := G(U), (1–3)

where G : U → Y is a generalized input-to-observations mapping and Y is the ’observation’ space.
The true observations would be Ȳ = G(Ū ), however the actual observations usually contain noise ξ
(observation uncertainty), i.e.

Y ∗ = Ȳ + ξ. (1–4)

The aim of data assimilation is to obtain Û = U |Y ∗, i.e. an estimate of U conditioned on observations
Y ∗, which should be better than the prior U∗ in the sense ‖Û − Ū‖ < ‖U∗ − Ū‖. In the Bayesian
framework the posterior probability density of U conditioned on observations Y ∗ is given by the Bayes
formula

p(U |Y ∗) =
p(Y ∗|U)p(U)

p(Y ∗)
. (1–5)

Looking for the mode of the posterior density p(U |Y ∗), i.e. maximizing p(U |Y ∗), is the essence of
variational data assimilation (estimation). Under the Gaussian assumption on the prior and observa-
tion uncertainties, i.e. ε ∼ N(0, B), ξ ∼ N(0, R), where B is the background error covariance and R
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- the observation error covariance, maximizing p(U |Y ∗) is equivalent to minimizing the cost-function

J(U) =
1

2
‖R−1/2(G(U)− Y ∗)‖2Y +

1

2
‖B−1/2(U − U∗)‖2U . (1–6)

Thus, the estimate Û is obtained from the necessary optimality condition

J ′
U (Û) = 0. (1–7)

For the operator G(U) we define the tangent linear operator G′(U) (Gateaux derivative) and its adjoint
(G′(U))∗ [S34] as follows:

G′
U (U)w = lim

t→0

G(U + tw)−G(U)

t
, w ∈ U , (1–8)

(
w, (G′

U (U))∗w∗
)
U
=
(
G′

U (U)w,w∗
)
Y
, w∗ ∈ Y. (1–9)

Given the above operator definitions, the full gradient of J(u) in (1–7) can be expressed in the form:

J ′
U (U) = (G′

U (U))∗R−1(G(U)− Y ∗) +B−1(U − U∗). (1–10)

Thus, the estimate Û is the solution to the operator equation

(G′
U (Û))∗R−1(G(Û )− Y ∗) +B−1(Û − U∗) = 0. (1–11)

The above presented general operator formulation of DA/estimation problems is common in nonlinear
regression and in the inverse problems theory.

In the theory of dynamical systems it is usual to formulate DA/estimation problems in terms of
non-stationary partial differential equations [S32]. Let X be the state space such that X = L2(0, T ; Ω),

with a norm ‖ · ‖X = (·, ·)1/2X , where Ω is a bounded domain of the natural space Rd (d = 1, 2 or 3).
For the initial state control problem considered in [A17] one can write

{
∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(1–12)

where ϕ = ϕ(x, t) (analog of X) is the unknown function belonging for any time instant t to L2(Ω),
x ∈ Rd is the spatial variable, u(x) ∈ L2(Ω), f(x) ∈ X are the initial state and the source term,
respectively, and F (x) is a nonlinear operator mapping L2(Ω) into L2(Ω). Suppose that for a given
pair (u, f) there exists a unique solution ϕ ∈ X to (1–12). Next, we introduce the functional

J(u) =
1

2
‖R−1/2(C(ϕ)− Y ∗)‖2Y +

1

2
‖B−1/2(u− u∗)‖2L2(Ω), (1–13)

where u∗ is a prior (background) of u. Thus, operator G is defined by the formula G(u) = C(ϕ), where
ϕ is the solution to equation (1–12). Now, consider the following data assimilation problem with the
aim to identify the initial condition: find u ∈ L2(Ω) and ϕ ∈ X such that they satisfy (1–12), and on
the set of solutions to (1–12), the functional J(u) takes the minimum value, i.e.





∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,

J(u) = inf
v∈L2(Ω)

J(v).
(1–14)
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The necessary optimality condition reduces the problem (1–14) to the following optimality system
[S32], [S34]: {

∂ϕ
∂t

= F (ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= û,
(1–15)

{
−∂ϕ

∗

∂t
− (F ′(ϕ))∗ϕ∗ = −(C ′(ϕ))∗R−1(C(ϕ)− Y ∗), t ∈ (0, T )

ϕ∗
∣∣
t=T

= 0,
(1–16)

B−1(û− u∗)− ϕ∗
∣∣
t=0

= 0 (1–17)

with the unknowns ϕ,ϕ∗, û, where (F ′(ϕ))∗ is the adjoint to the Frechet derivative of F , and (C ′(ϕ))∗

is the adjoint to the Frechet derivative of C defined by

(C ′(ϕ)η, ψ)Y = (η, (C ′(ϕ))∗ψ)X , η ∈ X , ψ ∈ Y.

We assume that the system (1–15)–(1–17) has a unique solution. It is easy to see that this system
is a detalized representation of the estimator equation (1–11) in the case the model M in (1–1)
is a dynamical model and the input U = {u} is the initial state ϕ(x, 0). Obviously, the general
results obtained for (1–11) are valid for the system (1–15)–(1–17). However, the latter is used for
better understanding of the structure of adjoint operators, which is sometimes vital for practical
implementation of the variational DA method.

1.2 Estimation error covariance and the inverse Hessian

1.2.1 Clarification of the existing theory

Here, we present the main results from [A17] and [A14] using the general operator formulation, whereas
in papers the dynamic formulation is used. The latter has its own value (see §1.2.3).

Let us consider an estimation error δU = Û − Ū and equation (1–11). We notice that

G(Û )− Y ∗ = G(Û )− (G(Ū ) + ξ) = G′
U (Ũ)δU − ξ,

where Ũ = Ū + τδU, τ ∈ [0, 1], and

Û − U∗ = (Û − Ū)− (U∗ − Ū) = δU − ε.

Then, equation (1–11) yields the error equation

(G′
U (Û))∗R−1(G′

U (Ũ)δU − ξ) +B−1(δU − ε) = 0, (1–18)

from where the estimation error can be expressed:

δU =
(
(G′

U (Û ))∗R−1G′
U (Ũ ) +B−1

)−1 (
(G′

U (Û))∗R−1ξ +B−1ε
)
. (1–19)

Using the first order approximations for operators G′
U (Û) ≈ G′

U (Ũ ) ≈ G′
U (Ū) we express δU as follows:

δU ≃ H−1(Ū )
(
(G′

U (Ū))∗R−1ξ +B−1ε
)
, (1–20)

where
H(·) = (G′

U (·))∗R−1G′
U (·) +B−1. (1–21)
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Here, (·) denotes a placeholder for the argument of operators G and H, which shall be called the
’origin’.

It has been shown that H(·) represents the first-order term in the Hessian of the cost-function
J(U) in (1–6) or, otherwise, is the Hessian of the auxiliary cost-function as follows:

J (·, δU) =
1

2
‖R−1/2(G′

U (·)δU − f1)‖2Y +
1

2
‖B−1/2(δU − f2)‖2U , (1–22)

where f1 ∈ Y and f2 ∈ U are trial functions, including f1 = 0 and f2 = 0. We assume that H is
positive definite and, hence, invertible. If the errors ξ and ε indeed satisfy the conditions ε ∼ N(0, B),
ξ ∼ N(0, R), then the estimation error covariance is

P = E[δUδUT ] ≃ H−1(Ū ). (1–23)

The above relationship is exact for linear G; for nonlinear G it is valid if the tangent linear hypothesis
is valid. Since in reality the true value Ū may not be known, one uses the particular estimate (event)
Û instead, i.e.

P ≃ H−1(Û). (1–24)

There are several papers presenting essentially the same result for dynamical models [S36, S44]. How-
ever, there has also been some confusion. For example, H(·) is often perceived as a Hessian of the
cost-function J(U) in (1–6), whereas it is the Hessian of the auxiliary cost-function J (U) in (1–22).
Another important point is that H−1(Ū) is the best possible approximation to P using H, whereas
H(Û ) is only an approximation to H(Ū). The latter fact has never been clearly underlined before.

1.2.2 Computing H
−1 using the LBFGS

First, we define the preconditioned (projected) Hessian in the form

H̃ = (B1/2)∗HB1/2 = (B1/2)∗(G′
U (·))∗R−1G′

U (·)B1/2 + I,

which is usually much better conditioned that H. Having computed H̃−1 in the limited-memory form
H−1 is recovered as follows:

H−1 = B1/2H̃−1(B1/2)∗.

It is easy to see that H̃ is the Hessian of the following auxiliary cost-function

J̃ (·, δU) =
1

2
‖R−1/2(G′

U (·)B1/2δU − f1)‖2Y +
1

2
‖δU − f2‖2U . (1–25)

We use the LBFGS method for generating the limited-memory representation of H̃−1 as the by-
product of minimization of J̃ (·, δU). A set of secant pairs of a given (prescribed) size is accumulated
during minimization, then the product H̃−1v is recovered by the BFGS recursion. The key improve-
ment of the quality of approximation (for a given number of secant pairs) has been achieved by
using the exact step search, as described in §5.1 in [A17]. The optimized (in terms of computational
expenses) version of this algorithm is presented in our later paper [A12], §6.2.

The Lanczos method is routinely used for computing H̃−1, whereas the BFGS or LBFGS are
usually seen as inferior to the Lanczos. Indeed, for the same accuracy of approximation achieved,
representation using the BFGS update formula is less compact than the eigenvalue representation.
The eigenvalue analysis, however, could be noticeably more expensive to compute (in terms of function
calls). Besides, control of computational costs in the LBFGS algorithm is easier than in the Lanczos
method.

We can cite only [S50] (preceding to [A17, A14] in time) where the same technique is considered.
The main focus in this paper is, however, on methods for computing the inverse of the analysis error
covariance P , given the BFGS representation of H−1 obtained in the inner loop of the incremental
approach. At the same time, matrix H−1 itself is not of interest and its accuracy is not assessed.
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1.2.3 On the importance of dynamic formulation

Let us note that in papers [A17] and [A14] the dynamic formulation is used. For example in the initial
state control problem, the Hessian-vector product is defined by the successive solution of the tangent
linear and adjoint models as follows

{
∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(1–26)

{
−∂ψ

∗

∂t
− (F ′(ϕ))∗ψ∗ = −(C ′(ϕ))∗R−1C ′(ϕ)ψ, t ∈ (0, T )

ψ∗
∣∣
t=T

= 0,
(1–27)

H(u)v = B−1v − ψ∗|t=0, (1–28)

where ϕ(u) is the solution of equation (1–12). These equations correspond to equation (1–21) with
U = {u}. The dynamic formulation is important because it shows different implementation options.
For example, if operator G is considered as a black box, then operators G′

U (·) and (G′
U (·))∗ can

be obtained by means of the Automatic Differentiation (AD) following the ’discretize-then-optimize’
approach. In one hand, the forward, tangent linear and adjoint models obtained this way are mutually
’consistent’. This is a vital property required for minimization of realistic high-dimensional models.
On the other hand, the models generated by means of the AD are often computationally cumbersome
and should be optimized manually.

For computing H−1 one must compute the product Hv several times at the same origin point
(model trajectory). Thus, the trajectory may be computed only once. In practice, computing the
solution and the perturbation in the AD produced TL model is done ’simultaneously’, i.e. one line
of the TL solver follows the corresponding line of the direct solver. Moreover, in case of nonlinear
iterations (to converge on ϕ), the TL solver follows step by step the iterative procedure, computing the
perturbation variable by increments. This is highly inefficient. For computing the Hessian, however,
it might be sufficient to have full consistency between the TL and adjoint models only. The forward
and TL models can be partially consistent, i.e. consistent in terms of the discretized operator F (·),
however the time integration method could be different. In this case the model’s trajectory once
computed and stored in memory can be supplied into the TL solver. Since the TL model is linear,
the nonlinear treatment involved with the forward solver is not involved with the TLM. Thus, one
can obtain a computationally efficient TL model. By applying the AD to the auxiliary cost-function
(1–22), one can get the code which computes its gradient. The latter defines the product Hv according
to (1–25). The code involves the adjoint model consistent with the modified TLM. Let us note that
this adjoint may not be suitable for solving the DA problem itself.

For the parameter estimation (control) problem considered in [A14], the mathematical model is
described by the evolution problem

{
∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,
(1–29)

where u is the known initial condition, λ ∈ Xp is an unknown model parameter and Xp is the parameter
space.

Let us introduce the functional

J(λ) =
1

2
‖R−1/2(C(ϕ)− Y ∗)‖2Y +

1

2
‖B−1/2(λ− λ∗)‖2Xp

, (1–30)
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where λ∗ ∈ Xp is a prior (background) of λ, and B is the covariance of δλ = λ∗ − λ̄, and consider the
following DA problem with the aim to estimate the parameter λ: for given (u, f), find λ ∈ Xp and
ϕ ∈ X such that they satisfy (1–29), and on the set of solutions to (1–29), the functional J(λ) takes
the minimum value, i.e. 




∂ϕ
∂t

= F (ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0

= u,

J(λ) = inf
v∈Zp

J(v).
(1–31)

The Hessian-vector product is defined by the successive solution of the tangent linear and adjoint
models as follows: {

∂ψ
∂t

− F ′
ϕ(ϕ̄, λ̄)ψ = F ′

λ(ϕ̄, λ̄)v, t ∈ (0, T ),

ψ|t=0 = 0,
(1–32)

{
−∂ψ

∗

∂t
− (F ′

ϕ(ϕ̄, λ̄))
∗ψ∗ = −(C ′(ϕ̄))∗R−1C ′(ϕ̄)ψ, t ∈ (0, T )

ψ∗
∣∣
t=T

= 0,
(1–33)

H(λ̂)v = B−1v − (F ′
λ(ϕ̄, λ̄))

∗ψ∗. (1–34)

These equations correspond to equation (1–21) with U = {λ}. From (1–26)-(1–28) and (1–32)-(1–34)
one can understand the difference between G′

u(·) and G′
λ(·). That is, there exists a basic TL equation

(system of PDE-based equations) which describes the evolution of perturbations through the system.
However, the perturbations are applied at different entries: at the initial condition (case of the initial
value control), and as a source term (case of parameter control). The adjoint equations coincide, the
expression for the gradient expressed via the adjoint variable ψ∗ is different. This structure suggests an
easy way of modifying the system (1–26)-(1–28) into (1–32)-(1–34). It is important to keep consistency
between operator F ′

λ(·, ·) and its adjoint. Since F ′
λ(·, ·) is not acting on ψ, it may not necessarily be

consistent with F ′
ϕ(·, ·). All these details are important to design a computationally efficient TL and

adjoint models for computing the Hessian-vector product (possibly not suitable for computing the
gradient of J(U)).

1.2.4 Illustration

The papers [A17, A14] describe a unique set of numerical tests which illustrate the use of the inverse
Hessian H−1 for approximating the estimation error covariance P in data assimilation problems involv-
ing dynamical models. While the relationship (1–24) has been well known long before our publications,
no results similar to those presented in [A17, A14] could be found in the preceding literature.

As an evolution model for the state variable ϕ(t, x) we use the 1D nonlinear convection-diffusion
equation {

∂ϕ
∂t = −w∂ϕ∂x + ∂

∂x

(
k(ϕ)

∂ϕ
∂x

)
, t ∈ (0, T ], x ∈ (0, 1),

ϕ(0, x) = u,
(1–35)

where w(t) is the convection velocity, k(ϕ) is the diffusion coefficient, with the Neumann boundary
conditions

∂ϕ(t, 0)

∂x
= q1(t),

∂ϕ(t, 1)

∂x
= q2(t). (1–36)

The initial condition, boundary conditions (fluxes) and diffusion coefficient estimation problems have
been considered. H−1 have been verified against the ensemble-based covariance estimate. The dif-
ference between the two shall be called the ’deterministic covariance approximation’ or DCA error.
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Given the model is perfect and the input error statistics are precise, the DCA error is due to lin-
earization of (1–18) around Ū (linearization DCA error component), and due to the shift of the
origin from Ū to Û (origin DCA error component). As numerical tests show, the latter could be far
more dangerous than the former. This can be explained by the fact that the local linearization error
(F (ϕ̂) − F (ϕ̄)) − F ′

ϕ(ϕ̄)(ϕ̂ − ϕ̄) can be dumped during time integration of systems (1–26)-(1–28) or

(1–32)-(1–34), and further reduced when the expectation operator is applied to δUδUT . Thus, H−1

can serve as a good approximation of P in the nonlinear case, assuming that the origin DCA error
component is reasonably small.

To conclude this section we present examples of the estimation error covariance matrices in the
diffusion coefficient and the boundary flux estimation problems. All details and conditions of the tests
can be found in [A14].
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Figure 1.1: Diffusion coefficient estimation problem. Left - Scaled variance ζ and ensemble variance ζ̂ for
k = 0.01 and ζ for k = 0.1. Left - covariance for k = 0.01.

1.2.5 On the role of the Hessian and its inverse

The importance of the Hessian matrix and its inverse in variational DA for geophysical applications is
underlined in [S44], although this has been a well-known fact in statistics for decades (see, for exam-
ple, [S42]). The previous section illustrates that for linear and moderately non-linear DA/estimation
problems H−1(·) can serve as an approximation of the estimation (analysis) error covariance matrix.
In particular, confidence intervals for the components of the estimate Û can be defined by the cor-
responding diagonal elements (variance) of H−1(Û ). A column ci of H−1(·) which includes the ith

diagonal element can be obtained by solving the equation H(·)ci = ei (where ei is a Euclidean unit
vector). If the number of requested diagonal elements is significant, it would be much less expensive
to evaluate H−1(·) once and keep it in some limited-memory form, than to retrieve necessary diagonal
elements using the Hessian-vector product rule.

In addition, H−1(·) is involved in several other aspects of statistical pre- and post-processing and
design of DA systems. Firstly, as the Hessian H(·) is equivalent to the Fisher information matrix (up
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Figure 1.3: Boundary fluxes estimation problem: H−1- based covariance. Left - inflow boundary, right - outflow boundary.

to a constant multiplier), the diagonal elements of the inverse Hessian can also be used in the context of
optimal experimental design involving such optimality criteria as l-optimality, for example. Secondly,
the analysis probability density function (pdf) is defined by the estimate Û and the estimation error
covariance. Random functions from the Gaussian distribution N (Û ,H−1(Û )) can therefore be used as
‘particles’ of the ensemble of initial states, which may be useful for ensemble forecasting [S45]. These
functions can be generated using U = U∗ +H−1/2(Û)ξ, where ξ ∼ N (0, I), or using the eigenvalues
of H(Û ) [S16]. However, in highly non-linear cases the ‘particles’ generated using this approach are
unlikely to belong to the true posterior distribution, thus one must solve perturbed DA problems.
This approach is referred to as the fully non-linear ensemble method [A17], or randomised maximum
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likelihood method [S8]. In these cases, an approximation of H−1/2(Û ) can be used for preconditioning
the non-linear minimization process to accelerate convergence, often with impressive results. Thirdly,
the analysis error δU and the data errors ε and ξ are related via the approximate error equation
(1–20), which can be used as a meta-model for investigating the effects of non-Gaussian data errors on
the estimation error pdf. Lastly, if the model depends on parameters θ ∈ Θ, where Θ is the parameter
space, an important problem is to evaluate the sensitivity of the estimation error to uncertainty ξθ in
these parameters. This can be done using the relationship

H(·)δU = (G′
U (·))∗R−1G′

θ(·)ξθ.

Once again, H must be inverted to obtain δU .
Another application is related to the use of H as a coefficient matrix (and preconditioner) in

incremental 4D-Var [S11]. Here each step of an outer iterative Gauss-Newton process is of the form
U j+1 = U j + αj δU j , with U j a discrete approximation of the unknown initial state at iteration j,
descent step αj and update (descent direction) δU j . As the update satisfies

H(U j)δU j = −G(U j), (1–37)

where G(U j) is the gradient of the cost function, a system of linear equations involving H has to be
solved at each step. Given a Hessian-vector product evaluation routine, the systems in (1–37) are
usually solved iteratively using, for example, the conjugate gradient (CG) algorithm. An approxima-
tion of H−1 or H−1/2, if available at a reasonable cost, can therefore be used to precondition equation
(1–37) to accelerate convergence of this inner iteration.
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Chapter 2

Advanced methods for UQ in
variational estimation

2.1 Effective inverse Hessian method

2.1.1 Theory of the method

Here, we present the main results from [A12] and [A10]. As mentioned above, the DCA error contains
two components: linearization error component and the origin error component. First, we will see
how the linearization component can be reduced.

Let us first consider a related abstract problem. Let g be a random vector of dimension n defined
as follows

g = A(u, η)ξ,

where ξ is a Gaussian random vector of dimension n with zero mean and the covariance matrix Bξ,
η(ξ) is a random vector with elements which are linearly or nonlinearly dependent on ξ, u is a given
non-random vector and A is a n×n matrix with elements ai,j nonlinearly dependent on u and η. Let
us assume that the matrix A can be presented in the form

A(u, η) = A(u, 0) + δA(u, η),

where A(u, 0) is the non-random part of A and δA(u, η) is the random part. The covariance matrix
of the vector g is

Pg = E
[
(A(u, η)ξ − E[g])(A(u, η)ξ − E[g])T

]
. (2–1)

One can see that if η does not depend on ξ, i.e. vectors η and ξ are not correlated, then E[g] = 0, and
E
[
A(u, η)ξξTAT (u, η)

]
= E

[
A(u, η)E[ξξT ]AT (u, η)

]
. For correlated vectors η and ξ (since we assume

that η = η(ξ)), the following proposition can be put forward:

Proposition (intuitive): Matrix E
[
A(u, η)E[ξξT ]AT (u, η)

]
= E

[
A(u, η)BξA

T (u, η)
]
is a better

approximation to Pg in (2–1) than A(u, 0)BξA
T (u, 0), both in terms of the Frobenius and Riemann

distances. The approximation accuracy increases when the correlation level between η and ξ decreases.

While the justification of this proposition provided in [A12] is rather weak, its validity has been
analyzed numerically.

Let us consider equation (1–19) in the form

δU =
(
H(Ū , δU, τ)

)−1 (
(G′

U (Ū + δU))∗R−1ξ +B−1ε
)
, (2–2)
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where
H(Ū , δU, τ) = (G′

U (Ū + δU))∗R−1G′
U (Ū + τδU) +B−1. (2–3)

Since the nonlinear least-squares estimator is asymptotically unbiased, we assume that E[δU ] is small
and, therefore, for the covariance P we have an expression as follows:

P := E[δUδUT ] = E
[
H−1(G′

U )
∗R−1 ξξT R−1G′

U (H−1)∗
]

+ E
[
H−1B−1 εεT B−1(H−1)∗

]

+ E
[
H−1B−1 εξT R−1G′

U (H−1)∗
]

+ E
[
H−1(G′

U )
∗R−1 ξεT B−1(H−1)∗

]
.

(2–4)

As discussed in the beginning of this section, we approximate the products ξξT , εεT , ξεT and εξT

in (2–4) by E[ξξT ] = R, E[εεT ] = B, E[ξεT ] = 0 and E[εξT ] = 0, respectively. Thus, we write an
approximation of P as follows:

P = E
[
H−1(Ū , δU, τ)

(
(G′

U (Ū + δU))∗R−1G′
U (Ū + δU) +B−1

)
(H−1(Ū , δU, τ))∗

]
, (2–5)

where the expression in the round brackets is the Hessian (1–21) at the point Ū + δU . Therefore, the
equation (2–5) can be written in the form

P = E
[
H−1(Ū , δU, τ) H(Ū + δU) (H−1(Ū , δU, τ))∗

]
. (2–6)

The value τ = 1/2 is the optimal one to achieve the best approximation of a difference E[G(Ū +
δU) − G(Ū )] by E[G′

U (Ū + τδU)δU ], for δU ∼ N(0, P ). In this case, however, one must deal with
operator H(Ū , δU, τ = 1/2), which is neither symmetric, nor positive definite, which may seriously
complicate its eigenvalue analysis and the subsequent limited-memory representation. Besides, the
double product formula is sensitive to the errors which result from the already accepted approxima-
tions. By assuming τ = 1 in H(Ū , δU, τ) and keeping in mind that H(Ū , δU, τ = 1) := H(Ū + δU)
this formula can be further simplified by the following expression:

P = E
[
H−1(Ū + δU)

]
. (2–7)

The right-hand side of (2–7) may be called the ’effective inverse Hessian’, hence the name of the
suggested method. In order to compute P directly using this equation, the expectation must be
substituted by the ensemble mean:

P =
1

L

L∑

l=1

H−1(Ûl), (2–8)

where Ûl are elements from the ensemble of estimates {Ûl}, l = 1, . . . , L, being obtained using per-
turbed data. Obviously, having such ensemble evaluated, the covariance matrix can be computed
according to its definition as follows:

P̂ =
1

Ls

Ls∑

l=1

(Ûl − Ū)(Ûl − Ū)T . (2–9)

The advantage of (2–8) is, however, that for L = Ls it gives much better approximation of P than
(2–9), particularly for small Ls.
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2.1.2 Key implementation details

Preconditioning

Implementation of formula (2–8) implies that L inverse Hessians have to be computed. This looks
like an extremely laborious task, however, computational costs can be drastically reduced by precon-
ditioning. We notice that the inverse Hessians are evaluated at the origin points perturbed around
the true input value Ū , which means that the difference between H−1(Ū + δUl) and H

−1(Ū ) can be
described by just a few low-rank updates. Thus, we consider a projected Hessian in the form

H̃(·) = (B1/2)∗H(·)B1/2 = (B1/2)∗(G′
U (·))∗R−1G′

U (·)B1/2 + I, (2–10)

and use H̃−1/2(Ū) for the second-level preconditioning of H̃(Ū + δUl) as follows:

˜̃H(Ū + δUl) = H̃−1/2(Ū)H̃(Ū + δUl)H̃
−1/2(Ū). (2–11)

One can see that ˜̃H(·) is the Hessian of an auxiliary cost-function

J̃ (·, δU) =
1

2
‖R−1/2(G′

U (·)H̃−1/2(Ū )B1/2δU − f1)‖2Y +
1

2
‖δU − f2‖2U . (2–12)

The limited memory approximation of ˜̃H(·) is evaluated as a by-product of minimization of this
cost-function by the LBFGS method, then, H−1(Ū + δUl) is recovered by the formula

H−1(Ū + δUl) = B1/2H̃−1/2(Ū ) ˜̃H−1(Ū + δUl)H̃
−1/2(Ū)(B1/2)∗. (2–13)

Taking into account (2–8) and (2–13), the expression for the optimal solution error covariance P reads

P = B1/2H̃−1/2(Ū)

(
1

L

L∑

l=1

˜̃H−1(Ū + δUl)

)
H̃−1/2(Ū)(B1/2)∗. (2–14)

The first step is, therefore, to find a limited-memory approximation of H̃−1(Ū). This is done by
minimizing the auxiliary cost-function (1–25) using the LBFGS algorithm. Next, having the product

H̃−1(Ū) · v defined, one can evaluate the leading eigenpairs ({λ(0)k ,W
(0)
k }, k = 1, . . . ,K0) of H̃

−1(Ū )
using the Lanczos algorithm.

Given the leading (maximum magnitude) eigenpairs ({λk,Wk}, k = 1, . . . ,K) of any symmetric
operator A, the limited-memory representation of A in power β can be constructed as follows:

Aβ · v = I · v +
K∑

k=1

(λβk − 1)Wk(Wk)
∗ · v, (2–15)

In particular, for the square-root H̃−1/2(Ū ) we get:

H̃−1/2(Ū) · v = I · v +
K0∑

k=1

((λ
(0)
k )1/2 − 1)W

(0)
k (W

(0)
k )∗ · v, (2–16)

Let us note that at this factorization stage we do not run PDE models, so the Lanczos method is
affordable. The product H̃−1/2(Ū) · v is involved in (2–12).
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Quasi-random approach

The implementation of formulas (2–8) or (2–14) requires a set of estimates Ûl = Ū + δUl, l = 1, . . . , L
to be computed. Each estimate is a solution to the original data assimilation problem for the cost-
function (1–6) with perturbed data U∗

l = Ū + ξl and Y
∗
l = Ȳ + εl, where ξl and εl are random events

from ξ ∼ N(0, R) and ε ∼ N(0, B), respectively. Evaluating such a set could be fairly expensive.
Here, an alternative approach is suggested. If we denote by fδU the multivariate probability density

of the estimation error δU , then the equation (2–7) can be re-written in the form

P =

∫ +∞

−∞
H−1(Ū + v)fδU (v)dv. (2–17)

Since we assume that the estimation error is approximately Gaussian with zero mean and covariance
P we obtain

P =
1

(2π)M/2|P |1/2
∫ +∞

−∞
H−1(Ū + v) exp

(
−1

2
vTP−1v

)
dv. (2–18)

In contrast to formula (2–8), the above expression is a nonlinear matrix integral equation (determin-
istic) with respect to P , while v is a dummy variable. This equation can be solved by the fixed point
iterative process

P k+1 =
1

(2π)M/2|P k|1/2
∫ +∞

−∞
H−1(Ū + v) exp

(
−1

2
vT (P k)−1v

)
dv, (2–19)

for k = 0, 1, ..., starting with P 0 = H−1(ū).
The evaluation of the multi-dimensional integral in (2–19) using the quasi-Monte Carlo method

means returning to formula (2–8). Taking into account (2–19), the iterative process takes the form




P k+1 = 1
L

L∑

l=1

H−1(Ū + δUk
l ),

P 0 = H−1(ū), k = 0, 1, ...

(2–20)

where δUk
l ∼ N(0, P k).

One can see that for each k the last formula looks similar to (2–8) with one key difference: δUk
l in

(2–20) is not an estimation error itself, but a vector having the statistical properties of this error. It
is generated as follows:

δUk
l = (P k)1/2ηl, ηl ∼ N(0, I).

where ηl is a quasi-random sequence from N (0, I). This approach is similar to the inflation approach
used in statistical estimation methods (ensemble Kalman and particle filtering). If the preconditioning
(2–10)-(2–11) is involved, the process (2–20) reads as follows:





˜̃P k+1 = 1
L

L∑

l=1

˜̃H−1(Ū + δUk
l ),

˜̃P 0 = I, k = 0, 1, ...,

(2–21)

where δUk
l ∼ N(0, P k), and the perturbation is defined as follows:

δUk
l = ( ˜̃P k)1/2H̃−1/2(Ū)(B1/2)∗ηl, ηl ∼ N(0, I).

Finally, the covariance P in the original space is recovered by the formula

P = B1/2H̃−1/2(Ū ) ˜̃PH̃−1/2(Ū)(B1/2)∗. (2–22)
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2.1.3 Illustration

Numerical experiments which justify the presented theory has been performed for Burgers’ equation

{
∂ϕ
∂t = −∂ϕ

2

∂x + ∂
∂x

(
k(ϕ)

∂ϕ
∂x

)
, t ∈ (0, T ], x ∈ (0, 1),

ϕ(0, x) = u.
(2–23)

The solutions to the Burger’s equation are known to develop sharp field gradients (shocks in the
inviscid case), where the nonlinear effects are particularly strong and, subsequently, the local DCA
error may be significant. We define this error as a difference between the deterministic covariance
P (either via (1–24) or (2–7)) and the sample covariance P̂ obtained by the ensemble method (2–9)
using a large sample (Ls = 2500). We consider two different initial conditions (cases A and B), the
corresponding field evolutions are presented in Fig.2.1. For each case we consider a different sensor
configuration: case A - 5 sensors located at x̄ = (0.35, 0.4, 0.5, 0.6, 0.65)T ; case B - 5 sensors located
at x̄ = (0.35, 0.45, 0.5, 0.55, 0.65)T .

The effect of using the ’effective inverse Hessian’ (2–7) instead of the inverse Hessian (1–24) is
demonstrated in Fig. 2.2. The upper panel of this figure shows the relative error

εi = Pi,i/P̂i,i − 1, i = 1, ...,M,

whereas its lower panel shows the sampling error

ε̂i = P̂i,i|L′

s
/P̂i,i|Ls=2500 − 1, i = 1, ...,M,

where L′
s = 25 and L′

s = 100. The latter indicates the level of error which corresponds to the sample
covariance matrix computed without ’localization’.

ϕ ϕ

Figure 2.1: - Field evolution for different initial conditions: left - case A, right - case B.
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2.2 Estimation error covariance versus Bayesian posterior covari-

ance

2.2.1 General theory

Here, we present the main results from [A9], which point out the difference between the classical
estimation (analysis) error covariance and the Bayesian posterior covariances, both in theoretical and
computational aspects.

The estimation error covariance is associated with trying to find an approximation around the
truth Ū , whereas the data is also assumed to come from the truth: Y ∗ = G(Ū )+ ξ, U∗ = Ū +ε, where
ξ ∼ N (0, R) and ε ∼ N(0, B) are the observation and background error, respectively. The estimation
error is defined as δU = U − Ū and its covariance is given by

P = Ea[(U − Ū)(U − Ū)T ] = Ea[δUδU
T ],

where Ea denotes averaging (expectation) with respect to the probability density function (pdf) ρa
which, taking into account the definitions of the data Y ∗ and U∗, can be defined as follows:

ρa(U) = const · exp
(
−1

2
‖R−1/2(G(U) −G(Ū ))‖2Y − 1

2
‖B−1/2(U − Ū)‖2U

)
. (2–24)

The Bayesian posterior covariance is given by

P = Ep [(U −Ep[U ])(U −Ep[U ])T ], (2–25)

where Ep denotes averaging (expectation) with respect to the pdf

ρp(U) = const · exp
(
−1

2
‖R−1/2(G(U) − Y ∗

0 )‖2Y − 1

2
‖B−1/2(U − U∗

0 )‖2U
)
. (2–26)

In the above formula Y ∗
0 stands for the actual observations made by an instrument. It could be, in

principle, seen in the form Y ∗
0 = G(Ū) + ξ0, where ξ0 is no longer a random variable, but a particular

event (number) from N (0, R). However, this representation is not used in the Bayesian approach.
Similarly, U∗

0 stands for the actual background. Then, the estimate Û0 satisfies the equation

(G′
U (Û0))

∗R−1(G(Û0)− Y ∗
0 ) +B−1(Û0 − U∗

0 ) = 0. (2–27)

The posterior covariance is often approximated by trying to find the second moment of ρp cen-
tered around Û instead of Ep[U ], which is natural because Û is the output of 4D-Var. In the linear
Gaussian setup Ep[U ] and Û coincide. This is not true in general, but can be expected to be a good
approximation if the volume of data is large and /or noise is small (due to the asymptotic properties
of the nonlinear least-square estimator, see [S42], Vol. 1, Ch.6). Most importantly, due to different
centering of Gaussian data, the Bayesian posterior covariance and the estimation error covariance are
different objects and should not be confused. However, they are equal in the linear case.

In order to simulate the distribution (2–26) we define perturbed data as follows: Y ∗ = Y ∗
0 + ξ and

U∗ = U∗
0 + ε. Then, the perturbed estimate Û satisfies equation

(G′
U (Û))∗R−1(G(Û )− Y ∗) +B−1(Û − U∗) = 0. (2–28)

One way to derive the error equation is to subtract (2–27) from (2–28). For the difference in the
residual terms we obtain

(G′
U (Û ))∗R−1(G(Û )− Y ∗)− (G′

U (Û0))
∗R−1(G(Û0)− Y ∗

0 ) =
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= {(G′
U (Û ))∗R−1G(Û )− (G′

U (Û0))
∗R−1G(Û0)} − {(G′

U (Û))∗R−1Y ∗ − (G′
U (Û0))

∗R−1Y ∗
0 }

= {(G′
U (Û ))∗R−1G(Û )− (G′

U (Û))∗R−1G(Û0)}1
+{(G′

U (Û))∗R−1(G(Û0)− Y ∗
0 )− (G′

U (Û0))
∗R−1(G(Û0)− Y ∗

0 )}2
−(G′

U (Û))∗R−1ξ. (2–29)

Using the Taylor-Lagrange formula [S34] the expressions in the brackets take the form

{·}1 = (G′
U (Û))∗R−1G′

U (Ũ1)δU,

{·}2 = [(G′(Ũ2))
∗]′UδUR

−1(G(Û0)− Y ∗
0 ),

where Ũi = Û0 + τi(Û − Û0), τi ∈ [0, 1], i = 1, 2. For the difference in the penalty terms we obtain

B−1(Û − U∗)−B−1(Û0 − U∗
0 ) = B−1(δU − ε). (2–30)

Combining (2–29) and (2–30) we obtain the error equation as follows:

(G′
U (Û))∗R−1(G′

U (Ũ1)δU − ξ) + [(G′(Ũ2))
∗]′UδUR

−1(G(Û0)− Y ∗
0 ) +B−1(δU − ε) = 0. (2–31)

In the operator form this equation can be rewritten as

H(Û , Ũ1, Ũ2) · δU = (G′
U (Û))∗R−1ξ +B−1ε, (2–32)

where

H(Û , Ũ1, Ũ2) · v = ((G′
U (Û ))∗R−1G′

U (Ũ1) +B−1) · v + [(G′(Ũ2))
∗]′U · v R−1(G(Û0)− Y ∗

0 ). (2–33)

Let us note that, generally, H is neither symmetric, nor positive definite.
The estimation error is expressed from (2–32) as follows:

δU = H−1(Û , Ũ1, Ũ2)((G
′
U (Û))∗R−1ξ +B−1ε). (2–34)

Next, we approximate (2–25) by the formula

P = Ep [(δUδU
T ]. (2–35)

Since operators H(Û , Ũ1, Ũ2) and G
′
U (Û) nonlinearly depend on δU , it is not possible to consider them

as constant multipliers when applying the expectation operator. One way is to fix Û , Ũ1, Ũ2 at the
value Û0. In this case H(·) becomes the Hessian of the cost-function (1–6) at the origin point Û0.
Next, by applying (2–35) we obtain

P = H−1(Û0)H(Û0)H−1(Û0), (2–36)

(compare this equation to (1–24)).
Since the condition number of the double product H−1HH−1 is usually larger than the condition

number of its components H and H, the above formula could be quite sensitive to the approxima-
tion errors. One way is to simplify this formula assuming H and H are not very different. These
simplification is

P = H−1(Û0), (2–37)

and, subsequently,
P = H−1(Û0). (2–38)

Another approach is to use the ’effective inverse Hessian’ method presented in §2.1. In this case
equation (2–36) becomes

P =
1

L

L∑

l=1

H−1(Ûl)H(Ûl)H−1(Ûl). (2–39)
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2.2.2 Implementation

As before, the computationally efficient and, therefore, feasible implementation is achieved using
preconditioning. The first-level preconditioning yields

H̃(·) = (B1/2)∗H(·)B1/2, H̃(·) = (B1/2)∗H(·)B1/2,

and the second-level preconditioning yields

˜̃H(·) = H̃−1/2(Û0) H̃(·) H̃−1/2(Û0), (2–40)

˜̃H(·) = H̃−1/2(·) H̃(·) H̃−1/2(·). (2–41)

At the first step we compute the leading eigenpairs ({λ(0)k ,W
(0)
k }, k = 1, . . . ,K0) of H̃(Û0). This

allows H̃−1/2(Û0) to be defined in the limited-memory form. Then, inside the ensemble loop (index l)
we compute:

a) the leading eigenpairs ({λ(l)k ,W
(l)
k }, k = 1, . . . ,Kl) of

˜̃H(Ûl), which allows us to define H̃−1/2(Ûl)
in (2–41);

b) the leading eigenpairs ({λ̃(l)k , W̃
(l)
k }, k = 1, . . . , K̃l) of

˜̃H(Ûl).

For a reasonably small δUl = Ûl − Û0, the number Kl of eigenpairs describing the Riemann
distance between H̃(Ûl) and H̃(Û0) has to be small as compared to K0. Similarly, K̃l has to be small
as compared to Kl because the difference between H̃(Ûl) and H̃(Ûl) is only due to the presence of the

second-order term. Thus, the expenses of computing the eigenpairs {λ(l)k ,W
(l)
k } and {λ̃(l)k , W̃

(l)
k } for

given l can make only a fraction of those associated with computing {λ(0)k ,W
(0)
k }.

Given all eigenpairs are computed, the posterior covariance in (2–39) is evaluated as follows:

P = B1/2H̃−1/2(Û0) A(Ûl) H̃
−1/2(Û0)(B

1/2)∗, (2–42)

where

A(Ûl) =
1

L

L∑

l=1

˜̃H−1/2(Ûl)
˜̃H−α(Ûl)

˜̃H−1/2(Ûl). (2–43)

In (2–43), cases α = 2, α = 1 and α = 0 correspond to approximations (2–36), (2–37) and (2–38),
respectively. The quasi-random implementation described in §2.1.2 is applied to substitute Ûl by
Û0 + δUl.

In the dynamic formulation the Hessian-vector product H(·)v is defined by the successive solutions
of the following problems [S28]:

{
∂ψ
∂t

− F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ|t=0 = v,
(2–44)

{
−∂ψ

∗

∂t
− (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )

ψ∗
∣∣
t=T

= 0,
(2–45)

H(u)v = V1v − ψ∗|t=0. (2–46)

Here ϕ and ϕ∗ are involved, being taken from (1–15)–(1–16). The problem (2–45) is the so-called
second-order adjoint problem. One can see that it is a standard adjoint problem with a specially
defined source term (F ′′(ϕ)ψ)∗ϕ∗. For certain F , this term is relatively expensive to compute as
compared to (F ′(ϕ))∗ψ∗, which could be a difficulty if the explicit time integration scheme is used.
This is not an issue, however, when the implicit or semi-implicit schemes are used.
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Figure 2.3: The relative errors ε1, ε2 and ε3 in logarithmic scale.

2.2.3 Illustration

As in §2.1, the numerical tests have been performed for Burgers’ equation (2–23), involving the same
initial conditions (see Fig.2.1) and observation schemes, cases A and B. The effect of using the estimates
of P is demonstrated in Fig.2.3 in terms of the relative error

ε
(n)
i = P(n)

i,i /P̂i,i − 1, i = 1, ...,M,

where P̂ is the reference Bayesian covariance (sample Bayesian covariance matrix obtained for a large
sample size (L = 2500), and P(n) are the Bayesian covariance approximations obtained by (2–42),2–
43). In particular, line 1e corresponds to α = 2 in (2–43), i.e. to the double-product formula, which
is promoted as a correct one; lines 2e and 3e correspond to α = 1 and α = 0, which represent the
simplifications of the double-product formula. Let us note that the latter is simply the effective inverse
Hessian, as presented in §2.1.

2.3 Future developments

It has been shown that the ’effective’ approximations of the covariance are noticeably more accurate
that the point approximations (1–23) or (2–36). Moreover, the quality of the ’effective’ approximations
can be further improved.

Let us consider the error equation (2–32)-(2–33). This equation describes the exact relationship
between the input errors (ξ, ε) and δU , given the true values of Ũ1 and Ũ2. In reality these values
are unknown. It is easy to show, however, that using Ũ1 = Ũ2 = Ũ = (Û + Û0)/2 guaranties the
second-order approximation accuracy of (2–32)-(2–33) with respect to δU . Note that considering
Ũ1 = Ũ2 = Û guaranties only the first-order approximation accuracy.

The implementation of this idea is not straightforward, however. The problem is that the resulting
H(Û , Ũ ) is not symmetric, which implies the need of computing the truncated singular value decom-
position, rather than the eigenvalue decomposition. Thus, it is desirable to derive an error equation
which guaranties the second-order approximation accuracy with respect to δU , but such that its H
has only one origin point.

Let us again consider the estimator equation (2–28)

J ′
U (Û) = (G′

U (Û))∗R−1(G(Û )− Y ∗) +B−1(Û − U∗) = 0. (2–47)
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This equation is trivially equivalent to the following:

J ′
U (Û)− J ′

U (Û0) = −J ′
U (Û0). (2–48)

By applying the Taylor-Lagrange formula to (2–48) we obtain

(J ′
U (Ũ ))′U · δU = H(Ũ) · δU = −J ′

U (Û0). (2–49)

Taking into account the expression for J ′
U (Û), we can write

(J ′
U (Ũ))′U · δU = ((G′

U (Ũ ))∗)′U · δU R−1(G(Ũ )− Y ∗) + ((G′
U (Ũ))∗R−1G′

U (Ũ) +B−1) · δU. (2–50)

For the right-hand side of (2–49) we can also write

J ′
U (Û0) = (G′

U (Û0))
∗R−1(G(Û0)− Y ∗) +B−1(Û0 − U∗) =

(G′
U (Û0))

∗R−1(G(Û0)− (Y ∗
0 + ξ)) +B−1(Û0 − (U∗

0 + ε)).

Since (2–27) holds, we obtain

−J ′
U (Û0) = (G′

U (Û0))
∗R−1ξ +B−1ε. (2–51)

Finally, the sought error equation is in the form

H(Ũ) · δU = (G′
U (Û0))

∗R−1ξ +B−1ε. (2–52)

As before, one may express δU from (2–52) and compute P = E[δUδUT ] by applying the expectation
operator as described in §2.1.1, in which case the posterior covariance is given by expression

P =
1

L

L∑

l=1

H−1(Ũl)H(Û0)H−1(Ũl), Ũl =
Ûl + Û0

2
, (2–53)

where Ûl, l = 1, . . . , L are the optimal solutions. Let us note that the quasi-random approach
presented in §2.1.2 cannot be used in this formulation because H(·) contains the second-order term
which involves Y ∗ = Y ∗

0 + ξl. Therefore, each Ûl must be consistent with a given ξl, i.e. the former
cannot be considered as an independent event from N (0,P). Unfortunately, using Y ∗

0 instead of Y ∗

would mean that the second-order approximation accuracy is no longer asserted. One way to deal
with this issue is to move the term (G′

U (Ũ ))∗)′U · δU R−1ξ to the right-hand side of the error equation
where, after applying the expectation operator, ξ is integrated out.

The suggested estimate of P is expected to be more accurate than the one given in (2–39). However,
the bottleneck of the ’effective inverse Hessian’ approach is a special use of the expectation operator,
which is allowed to be translated through nonlinear operators. From this point of view one may prefer
another scheme. First, we notice that if equation (2–52) is satisfied, than the following also holds

H(Ũl) δUδU
T H(Ũl) = (G′

U (Û0))
∗R−1 ξξT R−1G′

U (Û0) +B−1 εεT B−1. (2–54)

Next, the expectation operator is applied directly to equation (2–54) as described in §2.1.1, resulting
into

1

L

L∑

l=1

H(Ũl) P H(Ũl) = H(Û0). (2–55)

The motivation to apply such scheme is that H(·) is less nonlinear than H−1(·) and, therefore, trans-
lating the expectation operator through H(·) could result into less error.
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On the other hand, solving the linear matrix equation (2–54) for P is not easy. Since H(Û0) has
to be computed once, one can certainly use preconditioning by H−1/2(Û0), then (2–55) becomes

1

L

L∑

l=1

H̄(Ũl) P̄ H̄(Ũl) = I, (2–56)

where H̄(Ũl) = H−1/2(Û0) H(Ũl) H
−1/2(Û0), and P = H−1/2(Û0) P̄ H−1/2(Û0). Next, one could

benefit from the special structure of H̄(·) (the limited-memory approximation of the type (2–15)).
Moreover, P̄ itself can be directly sought in the same limited-memory form by an iterative minimization
algorithm. All mentioned issues constitute a subject for an immediate future research.

2.4 Summary

The main issue considered in this Chapter is the relationship between the Hessian of the cost-function
and the estimation error covariance matrix in variational DA, whereas the discussion is focused on the
essentially nonlinear case. In the classical (frequentist) statistical approach the estimation error δU is
considered as a difference between the estimate Û and the ’truth’ Ū . The corresponding covariance
matrix can be approximated by the inverse of the Hessian H of an auxiliary cost-function computed
at the ’truth’ point. If the ’truth’ is known (the identical twin experiment framework only), this is the
first-order approximation with respect to δU . In practice, the Hessian is computed at the estimate
Û0, which is obtained after assimilating the real data. The difference between Û0 and Ū yields an
additional error in the covariance (the origin error), which can not be removed in principle. These are
more or less well-known facts in variational DA. However, evaluating the inverse Hessian using the
LBFGS algorithm with exact step search has been a novel element.

In the Bayesian approach the estimation error δU is considered as a difference between the estimates
Û and Û0, conditioned on a perturbed and unperturbed data, respectively. Due to different centering of
data, the first-order (with respect to δU) approximations of the estimation (analysis) error covariance
and the Bayesian posterior covariance are different and should not be confused. The latter is computed
via the Hessian-product formula (2–36), which involves both the Hessian of the original cost-function
H, and the Hessian of the auxiliary cost-function H (often called the Jacobian). In the dynamic
formulation the Hessian-vector product H(·)v is defined by the second-order adjoint problem. The
formulas of the type (2–36) occasionally appear in the literature on statistics and nonlinear regression
in the general context of nonlinear least-squares (see e.g. [S15]).

Introducing the ’effective’ Hessian-based covariance approximations (2–8) and (2–39), as well as the
relatively feasible methods for their evaluation, is the main author’s contribution in terms of novelty.
The concept of such approximations stems from the exact error equations (1–18) and (2–31), the idea
of which, in turn, has been first presented in [S29]. In practice, evaluating (2–8) or (2–39) requires
an ensemble of the inverse Hessians H−1(Ûl), or the products H−1(Ûl)H(Ûl)H−1(Ûl) to be computed,
however the size of such ensemble can be small enough (L = 25− 50). The suggested method can be
regarded as an alternative to the standard sampling-based covariance evaluation method (involving
localization and other possible tricks). The later requires much large ensemble size to achieve the
similar approximation quality. The ways of improving the accuracy of the ’effective’ Hessian-based
covariance approximations are presented in §2.3.
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Chapter 3

Non-trivial applications of the Hessian
for UQ and design

3.1 On gauss-verifiability of optimal solutions

3.1.1 Introduction

Variational Data Assimilation (DA) is a deterministic approach based on the optimal control theory,
suitable for high-dimensional large-scale models arising in geophysical applications. The cost function
in variational DA includes the background term (the regularization term), the presence of which
usually guarantees that all of three Hadamard conditions are formally met. From this fact, however,
very little can be concluded on how close to the truth the optimal solution actually is. That is why
variational DA is often considered in a probabilistic context (including the Bayesian context, see e.g.
[S41, S43]), where the confidence region for the optimal solution can be constructed on a basis of
the estimation error covariance. This implies that the estimation error pdf is reasonably close to
the gaussian. We shall say that the optimal solution is gauss-verifiable if a sensible covariance-based
confidence region for the optimal solution error can be actually constructed. This is the main issue
considered in [A8].

The fundamental difficulty here is related to the nonlinearity of the model equations and the
observation operator. The nonlinear least squares estimator is asymptotically normal [S42], however
for a finite number of observations this is not the case. In one hand, the nonlinearity may distort its
gaussian properties to the extent when the covariance becomes no longer sufficient for constructing
the confidence region (even for the gaussian data errors). On the other hand, this distortion may
be localized in certain spatial areas (since it is related to the nonlinearity), whereas outside of these
areas the estimator holds its gaussian properties. Assuming the optimal solution is gauss-verifiable,
evaluating the estimation error covariance is not an easy task in practical terms. The major difficulty
can be attributed to the high-dimensionality of the state vector combined with the complexity of
the governing equations. This may result into unaffordable computational costs of a single optimal
solution, whereas for computing the sample covariance one needs an ensemble of optimal solutions.

Formally speaking, gauss-verifiability is tied to the approximate gaussianity (normality) of the
estimator. An immediate idea would be to use classical test statistics for multivariate normality [S21].
However, there are a few points why this may not be the best option. First, the classical test statistics
do not measure the gauss-verifiability (as we understand it) directly, so it is difficult to make a sensible
interpretation of results. Secondly, these statistics measure local properties of the nonlinear estimator,
which strongly depend on the point of evaluation, whereas we would rather prefer to know its global
properties. Thirdly, the sample (ensemble) on a basis of which these statistics are calculated is likely
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to be extremely small as compared to the size of the control vector. At the same time almost any
invariant test statistic is a function of the Mahalanobis distances and angles, which involve the inverse
square root of the sample covariance matrix. The difficulty of evaluating the inverse square root of a
matrix of a deficient rank is well known.

The aim of this section is to describe a tool for checking the gauss-verifiability, both total and
partial (local). We consider the estimation error pdf defined on the ”true” state and its approximation
defined on the optimal solution. The basic idea is to quantify our ability to recognize the truth among
statistically significant events associated to the analysis pdf, defined by the analysis (the mode), and
by the analysis error covariance. First, we introduce the coexistence principle. Then, in order to
quantify its violation (further referred as coexistence breach) we define the coexistence measure (CM).
The decomposition of the CM into the sum of components, each being associated to the corresponding
element of the state vector, is introduced. The distribution of these components in space shows the
subsets of the state vector for which the gaussian confidence regions cannot be properly defined.
Numerical experiments for the 1D Burgers equation illustrate the developed theory and demonstrate
the usefulness of the suggested measure and, especially, of its element-wise decomposition.

3.1.2 Coexistence measure

Let us consider again the cost-function (1–6). In order to underline its dependence on data entries we
re-write it as follows

J(U,U∗, Y ∗) =
1

2
‖R−1/2(G(U) − Y ∗)‖2Y +

1

2
‖B−1/2(U − U∗)‖2U . (3–1)

Associated with (3–1) is the estimator (1–11). As discussed in §2.2.1, if data comes from the ”truth”,
i.e. Y ∗ = G(Ū) + ξ and U∗ = Ū + ε, then the estimate U has the pdf

ρa(U, Ū ) = const · exp
(
−1

2
‖R−1/2(G(U) −G(Ū ))‖2Y − 1

2
‖B−1/2(U − Ū)‖2U

)
. (3–2)

Let us consider an independent variable w ≥ 0. For each w, the solution Γ(w) ∈ U to the equation

J(Γ(w), Ū , G(Ū )) = w

represents a manifold (locus) of equal likelihood c1(Ū )exp(−w) in the control space U . This manifold
bounds the domain Ω(w) where the cumulative density function β(w) is defined as follows:

β(w) =

∫ ·

Ω(w)
ρa(U, Ū)dU.

This function shows the probability that an event U ∼ ρ(U, Ū) falls ’inside’ the domain Ω(w). Let
us note that the manifold may consist of a few disconnected sub-surfaces, and the domain - of a few
disconnected sub-domains. For a given confidence level γ the corresponding value of w∗ satisfying the
equation

β(w∗) = γ, (3–3)

defines the confidence region Ω(w∗). All events U falling ’outside’ Ω(w∗) are considered as ’unlikely’
or ’statistically insignificant’ events to be discarded. It is worth mentioning that for nonlinear G, the
confidence region can be topologically very complex, therefore the notions of ’inside’ and ’outside’
cannot be trivial.
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Let us note that β(0) = 0, β(∞) = 1 and β(w) is a monotonic increasing function of w. Therefore,
β(w) < γ when w < w∗, and the criteria to test whether or not U falls into the confidence region
Ω(w∗) reads

J(U, Ū ,G(Ū )) < w∗. (3–4)

A particular optimal solution Û0 satisfies the estimator equation

(G′
U (Û0))

∗R−1(G(Û0)− Y ∗) +B−1(Û0 − U∗) = 0. (3–5)

where Y ∗ = Ȳ + ξ0 and U
∗ = Ū + ε0 are the actually observed data defined by the error events ξ0 and

ε0 which have actually come to pass (see §2.2.1). In this section we use Û instead of Û0 to simplify
notations.

Given Û as the best available approximation of Ū , the original pdf (3–2) takes the form

ρa(U, Û) = c2(Û) · exp
(
−1

2
‖R−1/2(G(U) −G(Û ))‖Y − 1

2
‖B−1/2(U − Û)‖U

)
=

= c2(Û) · exp
(
−J(U, Û ,G(Û )

)
, c2(Û ) = const > 0. (3–6)

Let us denote •|Ū an ”object associated to ρa(U, Ū )”, and •|Û an ”object associated to ρa(U, û)”.

We shall say that Û and Ū coexist if, simultaneously, Û is a statistically significant event in the
distribution ρa(U, Ū), i.e. Û ∈ Ω(w∗)|Ū , and Ū is a statistically significant event in the distribution
ρa(U, Û ), i.e. Ū ∈ Ω(w∗)|Û . Since both conditions have probability γ and they are assumed to be
statistically independent, the ”coexistence” is a random event with probability γ2 and has to be
quantified as a random variable. In terms of the testing criteria (3–4) this reads as follows:

Pr[J(Û , Ū ,G(Ū )) < w∗|Ū , J(Ū , Û ,G(Û )) < w∗|Û ] = γ2. (3–7)

The coexistence principle simply means that, with a given probability, the truth falls within the
confidence region defined for the pdf ρa(U, Û). The coexistence breach occurs when the original non-
gaussian pdf is approximated by the gaussian pdf. In this case we shall say that the estimate is not
gauss-verifiable on the whole.

In the finite-dimensional case (U = Rn) the gaussian approximation of ρa(U, Û) is given by

ρ̃a(U, Û ) = c(Û )exp(−1

2
‖P−1/2(Û)(U − Û)‖2U ) ≡ c(Û )exp(−J̃(U, Û)), (3–8)

where c(Û ) = (2π)−n/2(detP (Û ))−1/2, n is the dimension of the state space U , P (Û) is the covariance
computed from the pdf (3–6), and the function Û is the origin. For ρ̃a(U, Û ) the cumulative density
function β(w) is known to be the χ2

n-cumulative density function F (w,n), and w∗|Û = χ2
n(γ) is the

critical point of χ2
n distribution. Taking into account the definition of J in (3–1) we notice that

J(Ū , Û ,G(Û )) = J(Û , Ū ,G(Ū )). (3–9)

This is an important condition for the coexistence principle to hold. However, as a result of using the
gaussian ρ̃(U, Û ) instead of ρ(U, Û ) this condition may no longer be valid. In addition, the critical
point w∗|Û becomes χ2

n(γ). Therefore, the coexistence is affected by the two differences:

J̃(Ū , Û)− J(Û , Ū ,G(Ū )) (3–10)

and
χ2
n(γ)− w∗|Ū .
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Figure 3.1: Confidence regions.

Let us note that w∗|Ū is an integral quantity of the corresponding pdf and may differ from χ2
n(γ) not

too significantly (unless the specified confidence level γ is too close to 1). In this case the difference
(3–10) can be considered as a major cause of the coexistence breach. Therefore, the only condition
for our approach to be valid is as follows:

|J̃(Ū , Û)− J(Û , Ū ,G(Ū ))| ≫ |χ2
n(γ)− w∗|Ū |. (3–11)

Because the truth is not known, instead of (3–10) we can consider the difference

J̃(Û , Ū )− J(Ū , Û ,G(Û )) =
1

2
‖P−1/2(Ū)(Ū − Û)‖2X − J(Ū , Û ,G(Û )). (3–12)

In the above formulation the truth Ū becomes a random variable which falls inside a neighborhood
of Û consistent with ρa(U, Û ), i.e. Ū = Û + v, where v ∈ U is the estimation error. Thus, we are
interested in evaluating the difference

θ(v, Û) =
1

2
‖P−1/2(Û + v)v‖2U − J(Û + v, Û ,G(Û )) (3–13)

averaged over ρa(U, Û ):

E[θ(v, Û)] =

∫
θ(v, Û )ρa(Û + v, Û )dv. (3–14)

We shall call E[θ(v, Û )] the coexistence measure. It can be used to quantify gauss-verifiability of
optimal solutions. From another perspective, it is also a global measure of deviation of ρa(U, Û) from
normality.

The above idea is illustrated in Fig.3.1 for the case of two random variables. Here we present the
exact confidence regions associated to Ū and Û in dashed lines, the gaussian confidence regions - in
solid thin lines and the contours of equal likelihood - in solid thick lines. Due to the nonlinearity of
operator G(U), the cost-function J is not quadratic and the pdf (3–2) and (3–6) are not gaussian,
therefore the shape of the confidence regions differs from ellipsoidal. However, we can see, that Û
belongs to the certain likelihood locus associated to Ū , whereas Ū belongs to the equivalent locus
associated to Û . However, Ū falls outside the Gaussian confidence region associated to Û .

41



3.1.3 Coexistence measure deconvolution

It is important to present E[θ(v, Û )] as a sum of contributions associated to perturbations vi in the
elements of the control vector U . Those could be obtained as an outcome of a global sensitivity
analysis applied to E[θ(v, Û)], but such analysis is hardly feasible for the high-dimensional models.
One possible way to achieve the mentioned deconvolution is to consider the relationship

E

[
‖P−1/2(Û + v)v‖2U

]
= tr

{
E[P−1(Û + v)vvT ]

}
.

There is no guarantee, however, that the elements of the trace are non-negative values, so we consider
a modification of E[θ(v, Û )] allowing us to mitigate this difficulty.

Since E[P−1(Û + v)vvT ] is the integral with respect to v, under the conditions of the mean value
theorem, there exist v0 such that

E[P−1(Û + v)vvT ] = P−1(Û + v0)E[vvT ] = P−1(Û + v0)P (Û ), (3–15)

where P (Û) is the covariance computed from the pdf (3–6). Since v0 is not known, instead of P−1(Û+
v0) we consider in (3–15) its expectation E[P−1(Û + v)], then E[P−1(Û + v)]P (Û ) = E[P−1(Û +
v)P (Û )], and instead of E[θ(v, Û )] we introduce

D =
1

2
tr{E[P−1(Û + v)P (Û )]} − C1, (3–16)

where
C1 = E[J(Û + v, Û ,G(Û ))]. (3–17)

Consider the square-root decomposition P (Û ) = QQT , Q : U → U . Then

tr{P−1(Û + v)P (Û )} = tr{P−1(Û + v)QQT } = tr{QTP−1(Û + v)Q}

and

D = tr

{
1

2
E[QTP−1(Û + v)Q]− 1

n
C1In

}
. (3–18)

The last formula implies

D =

n∑

i=1

di, (3–19)

where

di =
1

2
(Aei, ei)U − C1

n
, A = E[QTP−1(Û + v)Q]. (3–20)

The operator A acts from U to U , therefore formula (3–19) evaluates an individual contribution of
each state variable into the integral value D.

Remark 1. Since P−1(Û + v) is positive definite for each v, it is easily seen that (Aei, ei)U ≥ 0,
because

(QTP−1(Û + v)Qei, ei)U = (P−1(Û + v)Qei, Qei)U ≥ ǫ‖Qei‖2 ≥ 0, ǫ = const > 0.

Let us note that di = (Aei, ei)U/2 − C1/n may not always be positive in theory. In practice, the
coexistence breach mainly occurs when (Aei, ei)U/2 ≫ C1/n.
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3.1.4 Implementation details

Further simplifications can be applied to some elements of (3–20). First, one can see that

C1 = E[J(Û + v, Û ,G(Û ))] ≈ n

2
. (3–21)

Secondly, for practical computations in (3–18) one needs to define the inverse (or pseudo-inverse) of
the covariance P (Û+v) for each integration point v. Computing the invertible P (Û+v) by the Monte
Carlo method requires an ensemble of estimates of a size greater then n, which would be an enormous
computational task for large n. However, the covariance P (·) can be approximated by the inverse
Hessian, see (1–24), which results into

P−1(Û + v) ≈ H(Û + v). (3–22)

The Hessian in (3–22) is defined by (1–21) or, in the dynamic formulation, by the successive solution
of the tangent linear and adjoint models (1–26)-(1–28). Using the approximations (3–21) and (3–22),
the coexistence measure defined by formula (3–18) can be represented as follows:

D ≈ D = tr

{
1

2
E[QTH(Û + v)Q]− In

2

}
. (3–23)

In this case formula (3–19) holds with elements

di =
1

2
(Aei, ei)U − 1

2
, A = E[QTH(Û + v)Q] (3–24)

Remark 2. It has been suggested that the coexistence has been breached locally if

di > d∗ =
α√
2n
, (3–25)

and globally, if
D > D∗ = α

√
n/2, (3–26)

where α > 0 is a real number associated to the confidence level γ. For example, α = 2 approximately
corresponds to χ2

n(0.05), and α = 3 - to χ2
n(0.001).

Since the factor Q does not depend on v, it must be computed once (outside the expectation
operator). It can be either the sample covariance-based or the Hessian-based. In the latter case

Q = H−1/2(Û),

and, subsequently
A = E[H−1/2(Û)H(Û + v)H−1/2(Û )]. (3–27)

Taking into account the formulas for preconditioning (2–10) and (2–11) (§2.1.2), one can easily see
that

A = E[H̃−1/2(Û)H̃(Û + v)H̃−1/2(Û )] = E[ ˜̃H(Û + v)], (3–28)

where H̃−1/2(Û) is defined by (2–15) using the leading eigenpairs ({λ(0)k ,W
(0)
k }, k = 1, . . . ,K0) of

H̃(Û ) or H̃−1(Û). In practice, the expectation operator is, of course, substituted by the mean

A =
1

L

L∑

l=1

˜̃H(Û + δUl), (3–29)
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where δUl, l = 1, . . . L could be either the estimation error itself, i.e. δUl = Ûl − Ū , or an arbitrary
vector having the statistical properties of the estimation error (see description the quasi-random
approach in §2.1.2).

An efficient way of computing A is by performing the eigenvalue analysis of the matrix ˜̃H(Û + v).

Given {λ(l)k ,W
(l)
k }, k = 1, . . . ,Kl are the eigenpairs of ˜̃H(Û + δUl), the expression for D and its

components di finally takes the form:

D =

n∑

i=1

di, di =
1

2L

L∑

l=1

[( Kl∑

k=1

λ
(l)
k − 1

)
W

(l)
k,iW

(l)
k,i

]
. (3–30)

Remark 3. The coexistence measure deconvolution in the control space is achieved if operator
Q = H−1/2 = B1/2H̃−1/2 is a mapping from U into U . This condition is satisfied if B1/2 : U → U ,
which implies B1/2 must be a symmetric operator. For example, given the singular value decompo-
sition (SVD) of the prior (background) covariance in the form B = USUT , the appropriate square
root is B1/2 = US1/2UT , however the Choleski factors of B are not suitable (due to asymmetry).
Unfortunately, the former requires the full-rank SVD of B to be computed, which may not be feasible
in high-dimensional problems. Thus, instead of defining B or B−1 first, then factorizing it, one should
directly define a symmetric B1/2. For the spatially distributed variables, this can be done by using
digital filters or the diffusion equation [S51].

Remark 4. Let us consider formula (2–14) for the covariance approximation P in the ’effective’
inverse Hessian method. The expression in round brackets inside this formula is exactly A given by
(3–29), i.e. the ensemble average of

˜̃H−1(Û + δUl),

each being defined by its eigenpairs {λ(l)k ,W
(l)
k }, k = 1, . . . ,Kl. This means that the coexistence

measure approximation D and its components di can be computed at a negligible computational
cost in the course of computing the ’effective’ inverse Hessian. Therefore, in addition to getting a
much better approximation of the covariance P (as compared to P = H−1(Û)), one can assess the
deviation from gaussianity and, most importantly, its spatial distribution. As numerical experiments
have shown, the non-gaussian effects may be localized in certain spatial areas.

3.1.5 Illustration

Here we present some numerical results which illustrate the developed theory. As a dynamical model
we again use the Burger’s equation (2–23). The field evolution for two different initial states is shown
in Fig.3.2. The upper panel in Fig.3.3 shows these initial states, 3σ-envelope (positive margin) for the
background and for the estimates (•|H−1 - Hessian-based and •|V̂ - sample covariance-based). The
observation array consists of four sensors located at x = [0.35, 0.45, 0.55, 0.65]. The lower panel in
Fig.3.3 shows the distributed coexistence measure di/D for large L = 2500, and the corresponding
envelopes (for L = 50). The corresponding values of the coexistence measure are: D = 507.4 in
case A1, and D = 268.5 in case B1. In both cases the coexistence has been breached globally
(since D∗ = 30). However, locally, di is distributed quite unevenly. In case A1, for example, D
accumulates its weight in the central part of the spatial domain, namely in the areas x ∈ (0.46, 0.52)
and x ∈ (0.56, 0.58). This figure shows that the covariance matrix is useful for building the confidence
intervals almost everywhere. However, for these two areas one may need to apply locally (!) different
estimation and uncertainty quantification methods, such as particle methods.
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ϕ ϕ

Figure 3.2: - Field evolution for different initial conditions: left/center/right - cases A/B, correspondingly.

3.1.6 Conclusions and future work

In the gaussian context, the estimation errors can be characterized by the confidence regions based
on the estimation error covariance matrix. Technical difficulties in computing this covariance are
related to the high dimensionality of the state vector, whereas a fundamental difficulty is related
to the nonlinearity of the model equations and of the observation operator. Nonlinearity distorts
the gaussian properties of the variational DA estimator and, as a result, the constructed gaussian
confidence regions may render a totally wrong error characterization. In this case we say that the
optimal solution is not gauss-verifiable. Since the distortion of the gaussian properties is due to
nonlinearity, one may expect the loss of gauss-verifiability taking place locally, in and around the
spatial areas where the nonlinear phenomena are particularly strong (such as shock waves, vortexes,
etc). In other words, there may exist non-verifiable localized subsets of the state vector, while for the
rest of the state vector the gaussian description of the error remains useful.

At a glance, to assess deviation from the gaussianity one should use the classical test statistics
for multivariate normality. However, these statistics do not measure gauss-verifiability directly and
usually require large ensembles/samples of optimal solutions for practical implementation, which is not
feasible for the models in mind. Here we introduce a new statistic called the coexistence measure (CM).
This statistic can also be considered as a ’global’ test statistic for multivariate normality. We suggest
a method for its decomposition into the sum of (predominantly) positive components associated to the
elements of the control vector. The subsets contributing the most weight into the total value of the
CM can be considered as non-verifiable. The CM and its decomposition is feasible to compute because:
a) it can be evaluated on a basis of a very small ensemble of optimal solutions; b) all computations
and storage are implemented in a matrix-free form.

In numerical experiments the CM and its decomposition have been tested. We notice that the
integral measures not always provide a sufficiently clear insight on the nature and extent of non-
gaussianity in variational DA systems. On the contrary, the CM decomposition offers a delicate tool
for analysis of gauss-verifiability. Moreover, computing CM is fairly reliable with sample-deficient
ensembles because of exploiting information provided by the Hessians. For example, such an ensemble
could be a natural outcome of the ’ensemble 4D-Var’.

The method can be easily extended to the Bayesian case. That is, as a basis for defining the
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Figure 3.3: Cases A1 and B1.
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coexistence measure one must consider the Bayesian pdf (2–26) instead of the ’analysis’ pdf (3–2). It
has been pointed out that the coexistence measure can be evaluated at a negligible cost in the course of
computing the ’effective’ inverse Hessian. However, more accurate ’effective’ covariance estimates are
suggested in §2.3, which implies that new computational procedures will be introduced. Subsequently,
the CM evaluation process should stay consistent with these new procedures.
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3.2 Design of optimal observation schemes

3.2.1 Introduction

State and/or parameter estimation for large-scale distributed parameters dynamical systems has be-
come a routine task in the past two decades. The applications include model initialization in meteo-
rology and oceanography, air and water quality monitoring, calibration of groundwater and reservoir
models, flow estimation and control in aerospace engineering, process control in chemical and nuclear
engineering, etc. A fundamental issue in these estimation problems is the selection of optimal sensors
locations (stationary sensors) and/or sensor trajectories (mobile sensors). This problem is related to
’optimal sampling’ or ’optimal experiment design’ considered in statistics [S17, S18, S48]. In geo-
sciences the notions ’adaptive’ or ’targeted’ observations are usually preferred [S6]. Optimization of
a design function defined on the Fisher Information Matrix (FIM) is a classical approach to solve the
experiment design problem. In geosciences, however, due to the large-scale nature of the models in-
volved, the FIM based design criteria are not considered to be computationally feasible and, therefore,
simplified approaches are used. In the context of variational DA one should mention methods using
the total energy singular vectors [S35], the adjoint sensitivity [S12], the sensitivity to observations
[S22] and the ’uncertainty field’ obtained via the error subspace statistical estimation technique [S31].
The paper [S5] represents a rare example of the FIM based approach (the V-optimality condition)
being used in large-scale variational DA.

Let us note that the FIM is actually equivalent (up to a multiplier) to the Hessian of the auxiliary
cost-function (1–22). The limited-memory approximation of this Hessian (and of its inverse) can be
efficiently evaluated using iterative methods, for example the Lanczos method or the LBFGS method.
If the limited-memory approximation of the Hessian is reasonably accurate, then it can also be used
to define the design criteria. Since the optimal design problem implies optimization of the design
function, its gradient with respect to the design parameters (sensor locations and/or trajectories), if
available, can be used in the gradient based optimization methods. For example, in [S47], an explicit
formula for the gradient of the FIM-based design function is presented and used for solving the sensor-
location problem (which includes some additional inequality constraints) by the linearization method.
However, for the classical design criteria (D, A and E-optimality) this formula requires the gradient of
all elements of the Hessian to be evaluated, thus it is not suitable for large-scale applications. In [S49] a
similar sensor-location problem is solved by the global minimization method (the tunneling algorithm)
which involves the local minimization stage, where the gradient could be very useful. Instead, this
local problem is solved by the gradient-free method, which exhibits a linear convergence rate at best.

It is therefore quite certain that if the computationally inexpensive methods for evaluating the
gradient of a design function are suggested, it might facilitate the use of these (well justified) op-
timality criteria for sensor placement in large-scale estimation problems, such that are common in
variational DA. Here, based on the author’s previous works [A13] and [A11], special new methods for
evaluating the gradient of the design function associated to the limited-memory inverse Hessian are
presented. The methods are suitable for large-scale applications. That means no full-storage matrices
are involved in computations of the gradient at any stage. The particular design function is defined on
the diagonal elements of the inverse Hessian, which approximate the estimation error variance. This
function is related to the A-optimality design criterion [S17]; other classical criteria (for example, D
and E-optimality design criteria) can be treated in a similar way. An efficient algorithm for evalua-
tion of the gradient is presented. This algorithm exploits the special structure of the limited-memory
inverse Hessian defined by a fixed number of its eigenpairs (Ritz pairs). The gradients obtained by
the suggested method have been checked against the gradients obtained by the direct finite-difference
method in a series of numerical experiments, conducted for the dynamical model governed by Burger’s
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equation. The methods presented are computationally inexpensive, though may require some addi-
tional memory to store the relevant information during the eigenvalue analysis of the Hessian by the
Lanczos method.

3.2.2 Sensor-location problem statement

Let X(x, t) be the model state defined for each time instant t in a bounded domain x ∈ Ω of the
natural space Rd (d = 1, 2, or 3). Thus, we define the state space as X = L2(0, T ; Ω). Assume that
one has a set of L sensors located at coordinates x̄ = (x1, . . . , xL)

T , xi ∈ Ω. We define the observation
operator C : X → Y, where Y = L2(0, T ;R

L), by the formula:

Y = CX = ((φ(x, x1),X)X , . . . , (φ(x, xL),X)X )
T , (3–31)

where φ(x, xi) ∈ L2(Ω) are some support functions of x ∈ Ω for fixed xi. Note that if φ(x, xi) is the
Dirac delta-function δ(x − xi) (which does not belong to L2(Ω)), then for regular X (3–31) may be
treated as

CX = (X(x1, t), . . . ,X(xL, t))
T , (3–32)

so in this case the values of the state X(x, t) at points x = xi, i = 1, . . . , L are observed. This is a
special (linear) case of the nonlinear observation operator defined by (1–3), which is considered for
the sake of simplicity.

To define the adjoint operator C∗, we consider the scalar product

(CX, q)Y =

∫ T

0
(CX(x, t), q)RL dt, X ∈ X , q = (q1(t), . . . , qL(t))

T ∈ Y.

By definition of C, the scalar product (CX, q)Y is equal to

∫ T

0

L∑

k=1

(φ(x, xk),X(x, t))L2(Ω) qk(t)dt =

∫ T

0

L∑

k=1

(φ(x, xk)qk(t),X(x, t))L2(Ω) dt = (X,C∗q)X ,

where the adjoint operator C∗ : Y → X is defined by

C∗q =

L∑

k=1

φ(x, xk)qk(t). (3–33)

Consider the expression for the Hessian (1–21). Since G(U) = CM(U), see (1–3), one can write:

H(·) = (M′
U (·))∗ C∗R−1C M′

U (·) +B−1. (3–34)

Given definitions for C and C∗ in (3–32) and (3–33), the Hessian-vector product is defined as follows:

H(·, x̄) v = (M′
U (·))∗




L∑

k=1

φ(x, xk)
L∑

j=1

R−1
kj

(
φ(x, xj), M′

U (·)v
)
X


+B−1v. (3–35)

In the finite-dimensional case U = Rm, and the Hessian H is m×m matrix. In design of optimal
observation scheme we are going to minimize certain diagonal elements of the inverse Hessian (or a
combination of these elements) with respect to the position of the sensors. Let us introduce a design
function in the form:

Ψ(·, x̄) =
m∑

i=1

pi
(
H−1(·, x̄)ei, ei

)
Rm , pi = const ≥ 0, (3–36)
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where {ei} is the standard basis in Rm. Then, the sensor-location problem may be formulated as
follows: find the set of sensor location coordinates x̄ such that the function Ψ(·, x̄) takes its minimum
value.

Since H−1
ii = (H−1ei, ei)Rm approximately represents the optimal solution error variance in i-th

element of the state vector, the function Ψ can be chosen to quantify the accuracy of the optimal
solution in a target area defined by pi. If pi = 1, i = 1, . . . ,m, then Ψ is the trace of H−1 and
inf x̄Ψ(·, x̄) is the classical A-optimality design criterion [S17, S18].

In order to apply the gradient-based optimization methods for solving the stated sensor-location
problem one needs the gradient of the function Ψ(·, x̄) with respect to x̄, that is Ψ′

x̄(x̄). We notice
that Ψ is a linear combination of the following norms:

J(·, x̄) =
(
H−1(·, x̄)g, h

)
Rm = hT H−1(·, x̄) g (3–37)

with h = g = ei. Hence, the gradient Ψ
′(·, x̄) can be expressed via the gradients of J(·, x̄) with respect

to x̄, that is J ′
x̄(·, x̄). Furthermore, we show that by specially choosing functions h and g in (3–37)

one can express the gradient of eigenvalues and eigenvectors of the inverse Hessian via J ′(·, x̄). This
allows a very efficient algorithm for computing Ψ′

x̄ to be constructed, with Ψ being defined on the
limited-memory inverse Hessian in the form (2–15). Thus, a formula for the gradient J ′

x̄(·, x̄) must be
derived first.

3.2.3 Gradient via adjoint of the Hessian derivative

Let δXv ∈ X and δXw ∈ X are the solutions to the tangent linear model with δU = {v} and δU = {w},
respectively, i.e.

δXv = M′
U (·)v, δXw = M′

U (·)w. (3–38)

The main theoretical results of [A11] are summarized in the following propositions:

Proposition 1. The gradient of (3–37) is given by the formula

J ′
x̄(·, x̄)δx̄ = −

(
H ′δx̄ H−1g, H−1h

)
U
= −

(
δx̄, (H ′H−1g)∗H−1h

)
RL , (3–39)

where δx̄ = (δx1, . . . , δxL)
T is the vector of variations in x̄, H ′(·, x̄) is a 3D-operator (tensor) with two

entries, and ∗ denotes the adjoint operator. Thus, in order to find J ′
x̄, one must know the adjoint of

the derivative of H(·, x̄) with respect to x̄.

Proposition 2. The adjoint operator (H ′δ v)∗w is defined on the functions (v,w) ∈ U by the
formula:

(H ′ v)∗w = ȳ, (3–40)

where ȳ = (y1, . . . , yL)
T is a vector with elements

yi =
(
δXw, αiφ

′(x, xi)x̄
)
X
+
(
δXw, βi

(
φ′(x, xi)x̄, δXv

)
L2(Ω)

)
X
, xi ∈ Ω, (3–41)

αi =

L∑

j=1

R−1
ij (φ(x, xj), δXv)L2(Ω) , βi =

L∑

j=1

R−1
ji φ(x, xj).

In the above formula φ′(x, xi) means the derivative of the support function φ(x, xi) with respect to xi:

φ′(x, xi) =

{
∂φ(xi, x)

∂x1i
, . . . ,

∂φ(xi, x)

∂xdi

}
,
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where xki , k = 1, ..., d are the spatial components of xi ∈ Ω ⊂ Rd. Thus, to find (H ′ • v)∗w, (v,w) ∈
L2(Ω), one needs to solve two tangent linear problems (3–38) and then use (3–40)-(3–41).

Proposition 3. Given the observation error covariance matrix R does not depend on time and
φ(x, xj) is the Dirac δ-function, formula (3–41) for yi takes the form

yi =
L∑

j=1

R−1
ij

∫ T

0
dt
[
δX ′

w(xi, t) δXv(xj , t) + δXw(xj , t)δX
′
v(xi, t)

]
, (3–42)

where δX ′(x, t) is the derivative of δX with respect to xk, k = 1, ..., d. Moreover, if R is a diagonal
matrix, then (3–42) can be further simplified as follows:

yi = R−1
ii

∫ T

0
(δXw(xi, t) δXv(xi, t))

′ dt, i = 1, . . . , L. (3–43)

Proposition 4. For a given set of the eigenpairs (Ritz pairs) {λk, Uk}, k = 1, · · · ,K of the projected
Hessian

H̃ = (B1/2)∗HB1/2, (3–44)

where H is given by (3–34), a limited-memory approximation of H−1 can be obtained in the form:

H−1 = B1/2H̃−1(B1/2)∗ = B1/2(I + Ū(S̄ − Ī)ŪT )(B1/2)∗, (3–45)

where S̄ = diag{s1, . . . , sK}, sk = λ−1
k , and Ū is a rectangular m×K matrix containing the eigenvectos

Uk. Usually, K is much less than the state vector dimension m. By definition

UT
k Ul =

{
1, l = k
0, l 6= k

. (3–46)

Proposition 5. For the functions gk = (B−1/2)∗Uk,

H−1gk = B1/2skUk, (3–47)

gTl B
1/2(·)(B1/2)∗gk = UT

l (·)Uk. (3–48)

3.2.4 Computation of the gradient of the design function

When choosing h = g = ej and pi = δij (the Kronecker delta) in (3–37), then Ψ = J = H−1
jj =

(H−1ej , ej)Rm ; thus Ψ′
x̄ = J ′

x̄ can be computed using (3–39), (3–40), and either (3–41) or (3–42) or
(3–43), where δXv is the solution of the tangent linear model (3–38) with v = H−1ej, and δXw = δXv .
For large-scale problems this could be a valuable option in the situation when a certain small subset
of the state-vector is of particular interest, for example some model parameters in the joint state-
parameter estimation problem.

If we are interested in the subsets of the state vector which may include a significant total number
of elements, another approach can be used. Let P be a diagonal m×m-matrix with elements pi and

let us consider the design function in the form (3–36). Denoting by B
1/2
i the i-th row of B1/2 and

taking into account (3–45), Ψ can be transformed as follows:

Ψ =

M∑

i=1

pie
T
i B

1/2(I + Ū(S̄ − I)ŪT )(B1/2)∗ei = Ψ0 +

M∑

i=1

piB
1/2
i Ū(S̄ − I)(B

1/2
i Ū)T =
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= Ψ0 +
M∑

i=1

pi

K∑

k=1

(sk − 1)(B
1/2
i Uk)(B

1/2
i Uk)

T = Ψ0 +
K∑

k=1

(sk − 1)
M∑

i=1

pi(B
1/2
i Uk)(B

1/2
i Uk)

T =

= Ψ0 +

K∑

k=1

(sk − 1)(B1/2Uk)
TP (B1/2Uk),

where Ψ0 =
M∑
i=1

pie
T
i Bei does not depend on S̄ or Ū . Then, the variation of Ψ is defined by

dΨ =

K∑

k=1

dΨk, (3–49)

where
dΨk = dsk(B

1/2Uk)
TP (B1/2Uk) + 2(sk − 1)(B1/2Uk)

TPB1/2dUk. (3–50)

Since only a limited set of the eigenvectors of the Hessian is available, we assume that the variation
dUk can be spanned using the available orthogonal basis Ū , i.e.

dUk = ŪdVk, (3–51)

where dVk = (dvk,1, ..., dvk,M )T is a vector of coefficients of size K. This is the only approximation
accepted in the suggested method. Then equation (3–50) can be written as follows

dΨk ≈ dsk(B
1/2Uk)

TP (B1/2Uk) + 2(sk − 1)(B1/2Uk)
TPB1/2ŪdVk. (3–52)

Next, we are going to show how dsk and dVk for (3–52 ) can be evaluated given the rule of
computation of the gradient for the cost function (3–37), where g and h are vectors which do not
depend on x̄ and H−1 is given by (3–45). We differentiate (3–37) and obtain

dJ = hTB
(
ŪdS̄ŪT + dŪ (S̄ − I)ŪT + Ū(S̄ − I)dŪT

)
(B1/2)∗g. (3–53)

Let us put h = gl = (B−1/2)∗Ul, g = gk = (B−1/2)∗Uk, l, k = 1, ...,K. Then, taking into account
(3–46), (3–47), (3–48) and (3–51), for each term in (3–53) we derive the following relationships:

UT
l Ū dS̄ Ū

T Uk =

{
dsk, l = k
0, l 6= k

, (3–54)

UT
l dŪ(S̄ − I)ŪT Uk =

{
0, l = k

(sk − 1)dvk,l, l 6= k
, (3–55)

UT
l Ū(S̄ − I)dŪT Uk =

{
0, l = k

(sl − 1)dvl,k, l 6= k
. (3–56)

Since dvl,k = −dvk,l, we finally obtain

dJl,k =

{
dsk, l = k

(sk − sl)dvk,l, l 6= k
. (3–57)

Based on the considerations presented in this section we formulate the following Theorem.
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Theorem 1. The gradient of the design function Ψ(·, x̄) with respect to x̄ can be expressed via
the gradients in the eigenvalues and eigenvectors of the projected Hessian (3–44) by the formula

Ψ′
x̄(·, x̄) =

K∑

k=1

Ψ′
x̄,k(·, x̄), (3–58)

where
Ψ′

x̄,k(·, x̄) ≈ s′x̄,k(B
1/2Uk)

TP (B1/2Uk) + 2(sk − 1)(B1/2Uk)
TPB1/2ŪV ′

x̄,k, (3–59)

with s′x̄,k and V ′
x̄,k satisfying

J ′
x̄,(l,k) =

{
s′x̄,k, l = k

(sk − sl)v
′
x̄,(k,l), l 6= k

. (3–60)

3.2.5 Key implementation trick

It follows from Propositions 1-5, that

J ′
x̄(l,k) = −ȳ, (3–61)

where ȳ is defined by (3–41) or (3–42) or (3–43) with

δXv := δXl, δXw := δXk, δXj = M′
U (·)B1/2sjUj , ∀j, (3–62)

δX ′
v := δX ′

l , δX ′
w := δX ′

k, δX ′
j =

∂

∂x

(
M′

U (·)B1/2sjUj

)
, ∀j. (3–63)

Applying the Lanczos method for the preconditioned Hessian matrix H̃ we get the decomposition
[S37]

W T H̃W = T, (3–64)

where W = {w1, . . . , wK} is the matrix formed by K Lanczos vectors, and T is a tridiagonal K ×K
symmetric matrix. The singular value decomposition of T is

T = ZΛZT ,

where Λ = diag{λ1, . . . , λK} and Z = {z1, . . . , zK} is the matrix of eigenvectors of T . The eigenvalues
λk of T (or the Ritz values) approximate the first K largest eigenvalues of H̃, and the Ritz vectors

Uk =Wzk, k = 1, . . . ,K, (3–65)

approximate the corresponding eigenvectors of H̃.
In the course of the Lanczos process the product

H̃wk = wk + (B1/2)∗(M′
U (·))∗ C∗R−1

(
C M′

U (·)B1/2wk

)

is computed for k = 1, . . . ,K, which implies that K vectors δX̃k(x̄, t) =
(
M′

U (·)B1/2wk

)
(x̄, t) and

δX̃ ′
k(x̄, t) =

(
∂(M′

U (·)B1/2wk)/∂x
)
(x̄, t) are available after the process. These vectors have to be

stored in memory, along with K ×K-matrix Z.
Now, consider (3–62). Taking into account (3–64) one can write

δXk = CM′
U(·)B1/2skUk = CM′

U (·)B1/2skWzk = CM′
U (·)B1/2sk

K∑

j=1

wjzk,j
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= sk

K∑

j=1

zk,j CM′
U (·)B1/2wj = sk

K∑

j=1

zk,j δX̃j (3–66)

Similarly we obtain

δX ′
k = sk

K∑

i=1

zk,j δX̃
′
j . (3–67)

The above relationships are of a fundamental importance. One can see that δXk(x̄, t) and δX ′
k(x̄, t)

can be evaluated using δX̃j(x̄, t) and δX̃
′
j(x̄, t), which have been accumulated during the computation

of the eigenpairs of H̃. This means that no additional runs of the tangent linear model are necessary.
Therefore, the gradient of the design function Ψ(·, x̄) can be obtained at a negligible computational
cost (in terms of CPU time) in the process of computing the design function itself.

3.2.6 Illustration

Some results showing the gradients (with respect to sensor location co-ordinates xi) in the diagonal
elements of the inverse Hessian are presented in Fig.3.4. As a model we use the 1D Burger’s equation
(2–23). The diagonal of H−1, which is an approximation of the estimation error variance, is presented
in the left panel. Each j-th element of this diagonal corresponds to the element of the unknown initial
state u(x) with the coordinate x = (j − 1)hx. The initial location of sensors is given by the vertical
lines. The scaled gradients (H−1

jj )′xi
/H−1

jj , j = 1, ...,m are presented in the right panel.
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Figure 3.4: Left: the reference ’variance’ diag{H−1} - solid line, the background variance - dashed line. Right: the scaled
gradients of the ’variance’ with respect to the sensor location co-ordinates xi, i = 1, . . . , 5.

3.2.7 Conclusions and future development

Design of optimal observation schemes or trajectories is a fundamental problem in state or/and pa-
rameter estimation of distributed parameter dynamical systems. In large-scale applications, such as
DA in meteorology and oceanography, the classical design criteria defined on the FIM or, equiva-
lently, on the Hessian of the auxiliary control problem are not computationally feasible. However, the
limited-memory approximation of the Hessian (and of its inverse) can be obtained with a reasonable
computational cost by iterative methods. We have assumed that this approximation is good, i.e.
minimizing design functions defined on the exact (full memory) and approximate (limited-memory)
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inverse Hessians produces close solutions. In practice, this assumption is bound to be valid if the eigen-
spectrum of the projected Hessian (3–44) has a small number of well-separated eigenvalues distant
from unity. This can be achieved by using an appropriate preconditioning. The objective has been to
derive an inexpensive method for evaluating the gradient of a design function defined on the diagonal
elements of the limited-memory inverse Hessian. This gradient can be used for the local optimization
of the design function by gradient methods (the conjugate-gradient or quasi-Newton methods, for
example) in the framework of a chosen global optimization procedure.

The first approach allows the gradient of a single diagonal element of the inverse Hessian to be
evaluated. This requires just a single run of the tangent linear model. The method provides a valuable
design option for those variational DA problems where target areas of the state vector (areas of interest)
contain a relatively small number of elements. The more general approach allows the gradient of any
weighted sum of the diagonal elements of the inverse Hessian (the A-optimality criteria makes a special
case) to be evaluated. Moreover, if the inverse Hessian is defined by the Ritz pairs obtained by means
of the Lanczos/Arnoldi iterative algorithm and the relevant information is stored in the computer
memory during these iterations, then the gradient can be obtained at a negligible computational cost
because no additional run of the tangent linear model is required. Given the availability of inexpensive
gradients, the benefit of using the gradient-based optimization methods instead of the gradient-free
optimization methods is quite obvious. The natural condition for this method to produce accurate
gradients is that the limited-memory inverse Hessian must be a good approximation of the exact
(full-memory) inverse Hessian.

The presented methodology is well developed in a sense that the major theoretical issues have
been answered. If required, it can be easily generalized to the case of nonlinear observation operators,
moving sensors, and to different design functions. Since the design problems involving Hessian (or FIM)
are usually solved using the gradient-free methods, it is an important task to promote the gradient-
based approach for a wider practical use. To this end one could investigate the design of targeted
observations for tracer monitoring or the determination of tracer source location in a realistic coastal
circulation model governed by the 2D shallow water equations, for example. Another interesting
problem is optimal design of observation array for large-scale distributed hydrological models.
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3.3 Implicit (’idle’) control and model error

3.3.1 Introduction

Variational DA method is preferred for weather and ocean forecasting in major operational centers
around the globe, particularly in the form of the incremental 4D-Var ([S11]), and in the form of the
ensemble 4D-Var ([S9]). Here, the quantity of interest is a forecast: the state of a system at the
forecast time which corresponds to the estimated controls. The use of variational DA is not limited
to operational forecasting, however. In some problems the quantity of interest can be represented
directly by the estimated controls. For example, in [S1] the sea surface heat flux is estimated in order
to understand its spatial and temporal variability. Another case is when such estimates serve as inputs
to different models. For example, the estimated initial condition from a low resolution model could
serve to initialize a higher resolution prognostic model.

A perfect model assumption leads to the strong constraint formulation of variational DA. However,
this assumption is not valid in many realistic applications due to uncertainties, known under the
common name of model error. Such uncertainties appear due to unresolved scales, unaccounted
physical processes, crude discretization of model equations and/or mis-specification of the model
parameters. Usually, the model error is defined as a linear source term added to the right-hand side of
the model equations. Inclusion of this term into the control vector yields the so-called weak constraint
variational DA formulation ([S38]). However, the model error can be introduced in many different
ways. For example, if we assume that the error magnitude depends on the flow field gradient, then it
can be defined as a coefficient inside the convective terms.

In variational data assimilation authors usually try to estimate the model error, which means
that all uncertainty-loaded model inputs are included into the control vector. However, this approach
suffers from serious implementation difficulties. The first one is an oversizing issue. Indeed, for the
model error which depends both on space and time (i.e. belongs to discretized X), the control vector
size would be equal to the dimension of the state vector multiplied by the number of time integration
steps. Dealing with a vector of that size could be difficult in terms of RAM memory. Furthermore, the
conditioning of the extended problem could be far less favorable than that of the original problem, and
noticeably more iterations may be needed to converge to a chosen accuracy level. Secondly there are
solvability and robustness issues. Let us recall that some models involved in DA are highly nonlinear.
For such models, the inclusion of certain additional variables into the control vector may lead to a
far more complex cost-function (in terms of its convexity, connectivity, etc.) and, subsequently, to
essential difficulties during the minimization process. This is not always the case though, as a weak
constraint formulation may actually reduce the nonlinearity level.

Here we describe an alternative approach to the model error treatment in which the control vector
does not need to be extended. This description is based on author’s work presented in [A7, A3]. The
main idea comes from the ’nuisance parameter’ concept, well known both in classical and Bayesian
statistics. In this concept the uncertainty-bearing model parameters are divided into two groups:
parameters of interest, say u, and nuisance parameters, say λ. The estimates of λ, by themselves,
have no practical importance; however uncertainty in λ affects the estimates of u. Many methods have
been proposed to eliminate the nuisance parameters from the likelihood function in classical statistics.
These methods often lead to the construction of a ’pseudo-likelihood’, a function of the data and u
with properties similar to those of a likelihood function. Commonly used pseudo-likelihood functions
include conditional, marginal and profile likelihood functions ([S39]). From the Bayesian point of view,
the elimination of λ is achieved by integrating it out, using a conditional prior density for λ given u.

Let us note that the model error affects the quantity of interest in two ways: directly and via the
estimate of the model controls. We consider a complete set of model inputs, including the distributed
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source term, as a full control set. If uncertainty in some input variables dominates the error in the
quantity of interest directly (such variables may even coincide with it), then these variables must be
included into the control vector. Such explicitly controlled variables constitute an ’active’ control set.
In some other input variables, uncertainty could be so small that its influence on the quantities of
interest may reasonably be neglected. Such variables constitute a ’passive’ set. Finally, if uncertainty
in some input variables is significant, but the inclusion of such variables into the ’active’ control set
entails severe computational difficulties, these variables could be subjected as ’nuisance parameters’
to an implicit treatment. A set of such variables shall be called an ’idle’ control set. Thus, the basic
idea of the proposed method is to consider the model error as an idle control, i.e. to reduce its indirect
influence on the quantity of interest by appropriately modifying the cost function. In particular, this
is achieved by introducing an ’inflated observation covariance’. Let us note that the method has
been established in a purely deterministic framework. The suggested method as it stands should be
useful primarily when the defined quantities of interest coincide with the active controls or are totally
dominated by them (for example, the state evolution at the beginning of the observation window in
the initial condition control problem). The method is feasible with high-dimensional models if the
observation space dimension is much smaller than the control space dimension.

3.3.2 Theory of the method

Let us consider the cost function (1–6) and divide vector U ∈ U into two parts: Ua and Uq = U \Ua -
the ’active’ and ’idle’ subsets of U , respectively. The input space U is also devided in two sub-spaces
Ua and Uq, such that U = Ua × Uq. Correspondingly, we consider the ’true’ values Ūa and Ūq, and
the background values U∗

a = Ūa + εa and U∗
q = Ūq + εq, where εa ∼ N (0, Ba) and εq ∼ N (0, Bq).

Furthermore we assume that εa and εq are not correlated (or already de-correlated), and Ba and Bq

are symmetric positive definite covariance operators. The ’inputs-to-observations’ mapping is now
defined as G(U) ≡ G(Ua, Uq), G : U → Y, and the observations as Y ∗ = G(Ūa, Ūq) + ξ.

By definition, Ua represents the variables which contain significant uncertainties and strongly influ-
ence the model forecast. Such variables are usually estimated (controlled) using available observations.
For example, in the conventional 4D-Var these are the initial states of the system. Concerning the
variables in Uq, we assume that they do not contain significant uncertainties or that these uncertain-
ties do not affect the model forecast. In modeling, such variables are set to their background values.
The DA problem is then formulated as the following optimal control problem: for a given U∗

a ∈ U ,
Uq = U∗

q ∈ U and Y ∗ ∈ Y, find Ua ∈ U such that

J0(Ua) =
1

2
‖R−1/2(G(Ua, U

∗
q )− Y ∗)‖2Y +

1

2
‖B−1/2

a (Ua − U∗
a )‖2Ua

→ inf
Ua

. (3–68)

However, if uncertainty in Uq can not be ignored, these variables should also be involved in the
estimation process. The most obvious and widely used approach is to include Uq into the control
vector and consider the following extended estimation problem: for a given U∗

a ∈ Ua, U
∗
q ∈ Uq and

Y ∗ ∈ Y find a pair (Ua, Uq) such that

J(Ua, Uq) =
1

2
‖R−1/2(G(Ua, Uq)− Y ∗)‖2Y

+
1

2
‖B−1/2

a (Ua − U∗
a )‖2Ua

+
1

2
‖B−1/2

q (Uq − U∗
q )‖2Uq

→ inf
Ua,Uq

. (3–69)

The estimator associated with (3–69) has the form:
{
B−1

a (Ûa − U∗
a ) + (G′

Ua
(Ûa, Ûq))

∗R−1(G(Ûa, Ûq)− Y ∗) = 0,

B−1
q (Ûq − U∗

q ) + (G′
Uq
(Ûa, Ûq))

∗R−1(G(Ûa, Ûq)− Y ∗) = 0.
(3–70)
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Consider a modified cost-function

J(Ua|Uq) =
1

2
‖Rg

−1/2(G(Ua, U
∗
q )− Y ∗)‖2Y +

1

2
‖B−1/2

a (Ua − U∗
a )‖2Ua

→ inf
Ua

, (3–71)

where
Rg = R+G′

Uq
(Ū)Bq(G

′
Uq
(Ū))∗. (3–72)

The operator Rg : Y → Y is referred to as the ’inflated observation covariance’. Here, the input subset
Uq is involved in the estimation process implicitly via Rg, hence the name ’idle’ (as opposite to ’active’
or ’passive’). The estimator associated with (3–71) has the form:

B−1
a (Ûa − U∗

a ) + (G′
Ua

(Ua, U
∗
q ))

∗R−1
g (G(Ua, U

∗
q )− Y ∗) = 0. (3–73)

Let Û
(1)
a be the solution to the minimization problem (3–69) and Û

(2)
a - the solution to (3–71)-(3–

72). Then, the following Theorem is proved in [A3]:

Theorem 2. The estimators associated to cost-functions J(U
(1)
a , Uq) and J(U

(2)
a |Uq) are equiva-

lent in the following sense: for a linear mapping G the optimal solution errors δÛ
(1)
a = Û

(1)
a − Ū and

δÛ
(2)
a = Û

(2)
a − Ū are identical, thus the solutions Û

(1)
a and Û

(2)
a are identical; for a nonlinear G these

solutions match approximately if the tangent linear hypothesis is valid.

It follows from the Theorem that U
(1)
a from (3–69) can be approximated by the solution U

(2)
a to

(3–71), using U∗ instead of Ū in (3–72). This approximation can be further improved by using the
following iterative process:

U
(2)
a,k = argmin Jk(Ua|Uq),

where Jk(Ua|Uq) is defined by (3–71) with Rg = R + G′
Uq
(U

(2)
a, k−1, U

∗
q )Bq(G

′
Uq
(U

(2)
a, k−1, U

∗
q ))

∗ and k is
the iteration number.

Let us recall that ξ ∼ N (0, R), εa ∼ N (0, Ba) and εq ∼ N (0, Bq). Since non-linear least-square
estimators are asymptotically unbiased, we assume that

E(δÛ (1)
a ) = E(δÛ (2)

a ) = 0.

Then, the following is valid:

Corollary. Under conditions of the Theorem 2,

E(δÛ (1)
a δÛ (1)T

a ) ≈ H−1
g (Ū) ≈ H−1

g (Ûa, U
∗
q ) (3–74)

where
Hg(·) = B−1

a + (G′
Ua
(·))∗Rg

−1(·)G′
Ua

(·). (3–75)

The Corollary shows the way of computing the estimation error covariance for any chosen subset of
the full control vector U . This could a valuable option if the dimension of U is extremely large, both
in terms of the memory and the number of Lanczos (or LBFGS) iterations required.
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3.3.3 Implementation

In order to calculate the cost-function (3–71) one must define the product R−1
g v, ∀v ∈ Y, whereas Rg

is given by (3–72). Let us consider the preconditioned Rg:

R̃g = R−1/2RgR
−1/2 = I +R−1/2G′

Uq
(·, ·)Bq(G

′
Uq
(·, ·))∗R−1/2. (3–76)

It can be seen from the above formula that all eigenvalues of R̃g are greater than or equal to one.
Furthermore, it should be anticipated that only a relatively small percentage of the eigenvalues are
distinct enough from unity to contribute significantly to R̃g. This suggests using limited-memory
representations of R̃g, where this structure in the spectrum is exploited. Specifically, a few leading
eigenvalue/eigenvector pairs {βi, zi}, i = 1, . . . , N1 are computed using the Lanczos method, and R̃−1

g

is replaced by the approximation

R̃−1
g ≃ I +

N1∑

i=1

(β−1
i − 1)ziz

T
i .

Finally, for R−1
g v we get

R−1
g v = R−1/2

(
I +

N1∑

i=1

(β−1
i − 1)ziz

T
i

)
R−1/2v. (3–77)

Re-evaluating of {βi, zi} has to be done if the entries in G′
Uq
(·, ·) are changed. When using (U∗

a , U
∗
q ),

this procedure has to be performed once before the minimization of (3–71) begins.
The same approach is used for computing the inverse of Hg in (3–75). In particular, the eigenpairs

{βi, zi}, i = 1, . . . , N2 of a preconditioned H̃g = B
T/2
a HgB

1/2
a are evaluated, H−1

g is then recovered
using

H−1
g = B1/2

a

(
I +

N2∑

i=1

(β−1
i − 1)ziz

T
i

)
BT/2

a . (3–78)

3.3.4 One possible application

Let us assume that the model error is biased, i.e. εq ∼ N (εq,s, Bq). This implies that εq = εq,s + εq,r,
where εq,s and εq,r ∼ N (0, Bq) are the systematic and random components of εq, respectively. Let us
also consent that the systematic error component(’mean field’) is not changing in time, whereas the
’random’ component is time-dependent, i.e. εq,r = εq,r(t). Then, the explicit treatment of εq,r is not
feasible.

Proposition. In treatment of the space-time distributed model error, its systematic component
εq,r should be considered as ’active’ control, whereas the random component εq,r - as ’idle’ control.
This results into the minimization problem for the following cost-function:

J(Ua, εq,s|Uq) =
1

2
‖R−1/2

g (G(Ua, U
∗
q − εq,s)− Y ∗)‖2Y

+
1

2
‖B−1/2

a (Ua − U∗)‖2Ua
+
α

2
‖Wεq,s‖2Uq

→ inf
Ua, εq,s

, (3–79)

where Rg = R + G′
Uq
(Ūa, Ūq)Bq(G

′
Uq
(Ūa, Ūq))

∗, α is a regularization parameter, and W is a weight-
matrix.
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In practice, instead of (Ūa, Ūq) in the expression for Rg one can initially use (U∗
a , U

∗
q ). The cost-

function is interesting in the sense that it combines the elements of the Bayesian and deterministic
approaches (the Tikhonov regularization method). This is because no probabilistic description of the
systematic model error component εq,s is available. Therefore, the parameter α and the weight matrix
W must be chosen from additional considerations.

3.3.5 Illustration

Numerical tests has been performed for the model (2–23). The major purpose of these tests has been
to assess the accuracy of the method in the case of nonlinear G (bilinear and nonlinear modes of
equation (2–23)). The results can be seen in [A3]. Later on, the method has been successfully applied
to the discharge estimation problem under uncertainty in bathymetry and the bed roughness (the
Strickler coefficient), using the Saint-Venant hydraulic network model.

3.3.6 Conclusions

1. The influence of the model error on the estimates of the variables of interest can be elimi-
nated/reduced by considering this error as an idle control variable, which implies the implicit treatment
via the inflated observation error covariance Rg (in essence, the modified likelihood). The theorem
has been proved which asserts partial equivalency between the suggested method and the conventional
control vector extension method for a linear control-to-observations mapping, and approximate equiv-
alency for a nonlinear mapping. In the latter case, the quality of the approximation seems superior if
measured in terms of the estimation error variance. Therefore, an alternative method for the model
error treatment is suggested, which has not been considered before, not in the framework of variational
DA involving high-dimensional geophysical flow models at least. The only relevant reference is [S23],
the paper which has appeared almost simultaneously with [A3].
2. The difficulties associated with the control vector extension method include oversizing, solvability
and robustness. The proposed method allows us to alleviate these difficulties. However, the method
would only be useful if the active and idle control sets are correctly defined, i.e. if the indirect contribu-
tion into the quantities of interest by an idle variable is significantly larger than its direct contribution.
By the indirect contribution we mean the contribution via the estimates of the variables from the ac-
tive control set. Of course, to properly attribute the input variables into the active, idle and passive
sets one must perform an uncertainty analysis of the system. For example, it has been shown in the
numerical experiments that a spatially distributed mean of the model error should be included in the
active control set, whereas time dependent fluctuations around this mean - in the idle control set.
3. The Corollary has also been proved stating that the covariance of the estimation error in the vari-
ables of interest can be approximated by the inverse Hessian of the auxiliary cost-function associated
to the control problem formulation involving the inflated observation error covariance Rg. This shows
a way of computing the estimation error covariance of a chosen part of a control vector.
4. The proposed method is feasible for high-dimensional problems since Rg is represented by a small
set of its largest eigenvalues (and corresponding eigenvectors), obtained by means of the Lanczos al-
gorithm. For a linear mapping G the inflated observation error covariance Rg does not depend on the
model state, therefore it can be computed once and stored. For a nonlinear mapping G, Rg depends
on the state. However, the numerical tests have shown that Rg computed at the background point
may suffice, at least for the chosen model (generalized Burgers’ equation).
5. The suggested implicit model error treatment method is primarily suited to the case when the
quantities of interest coincide with the active controls or are largely dominated by them (reanalysis,
as opposed to forecasting).
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6. The presented theory can be used as a basis for a control space decomposition approach (work in
progress), which might eventually lead to a new variant of the method better suited to forecasting.
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3.4 Design of the control set

3.4.1 Introduction

In many applications the choice of the control set seems rather obvious. For example, in short-
range forecasting using global atmospheric or ocean models the initial state is controlled, whereas for
longer forecasting periods one must also control the forcing term to remove the model bias. When the
limited-area models are considered, the boundary conditions at open boundaries are usually controlled.
However, there are applications when the control set composition is not so evident, for example, in
hydraulic and hydrological modeling. A key role in this modeling plays information about river
discharges. A distinctive feature of this problem is the likely presence of significant uncertainty in
distributed source terms (lateral inflows and outflows) and in model parameters, such as bathymetry,
friction, infiltration rate or in those defining behavior of hydraulic structures. This uncertainty, if not
taken into account, could degrade the estimated discharge accuracy very noticeably.

The usual way to tackle the (systematic) uncertainties is to include all uncertainty-bearing model
inputs into the control set. An ultimate implementation of this idea results into the model error control
concept or the weak DA formulation [S38]. Unless the available computational resources are exceeded,
working with such control set is not too difficult in the variational DA framework. However, there are
clear reasons for limiting the number of control variables included into the control set. First we note
that when a certain input is added into the control set, the corresponding constraints should be added
to keep well-posedness of the problem formulation. In the framework of unconstrained minimization
those are in the form of penalty terms added to the cost function. For some variables constructing such
terms is possible, whereas for other variables the inequality constraints must be explicitly introduced,
in which case the very nature of the minimization problem would be changed. Solving such problem
requires notably more iterations which could be a serious drawback if the time when the results remain
usable is limited.

There are even more delicate reasons. For example, if for a certain dynamical model solvability of
the initial state control problem has been established, solvability of the joint state-parameter control
problem is not warranted. Such problems are nonlinear even for a linear dynamical model, whereas for
a nonlinear dynamical model the overall nonlinearity level would grow. This means losing convexity,
decreasing the convergence radius around the global minimum, multiplying the local minima, etc.
That is, the control problem becomes far more difficult to solve in practice. There is one more
reason. In order to use the gradient-based unconstrained minimization we assume that the control-
to-observation mapping exists and is continuous everywhere in a vicinity of the reference (true) value,
i.e. the operator domain is dense around the truth and the initial guess belongs to this vicinity.
In practice, some combinations of the model inputs may arise in the course of minimization such
that the control-to-observation mapping does not exist. For example, in hydraulic modeling some
combinations of bathymetry, friction and source terms may lead to local super-critical flow conditions.
These conditions, however, are not supported by models which utilize the Preissmann discretization
scheme. In this case the model execution stops and the minimization process has to be restarted from
a different point. This is an additional complication to the minimization procedure which is better to
avoid if possible. Moreover, due to nonlinearity of the problem, the unwanted combinations of controls
cannot be easily blocked by using inequality constraints.

Taking into account all the above-mentioned reasons one may conclude that for certain DA prob-
lems the control set has to be chosen carefully. In one hand, it should provide the model predictions
of a reasonable quality, on the other hand - guarantee the robustness and feasibility of the solution
procedure. This is the meaning of the the notion ’control set design’.

In the Gaussian framework, the uncertainty quantification (UQ) method for observed systems
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(i.e. systems for which the posterior control estimates are available) includes two basic steps: a)
computing the posterior covariance matrix of the control vector; b) computing the variance in chosen
quantities of interest (QoI) using the posterior covariance and the control-to-QoI mapping. Under
the assumption that the uncertainty propagation is well described by the tangent linear (TL) model
(i.e. the nonlinearity of the mappings is mild or perturbations are small), the latter is actually used
to represent the control-to-QoI mapping, whereas the posterior covariance is approximated by the
inverse Hessian of the cost function (linearized or complete). Since such a UQ method relies on the
same principles as variational DA, it seems reasonable calling it the variational UQmethod. Combining
the variational DA and variational UQ methods results into variational filtering [S3]. Recent examples
of the variational UQ method being applied to different problems can be found in [S26, S25].

The method described in this section represents a generalization of the variational UQ method in
the following respect. We divide the full set of the uncertainty-bearing model inputs in two parts.
One part is considered as active controls (the active set), whereas the remaining inputs are fixed at
their priors (the passive set). Next, we define a spatially distributed goal-function and its standard
deviation (SD) as the uncertainty measure. Clearly, the passive set contributes to this measure both
directly and via the posterior covariance of the active set. Our method allows both contributions (to
the uncertainty measure) to be properly evaluated. We define a sufficient control set as a set for which
this measure takes a value useful from the practical point of view. All possible active sets have to be
examined, then ranked by the associated uncertainty measure level to reveal all sufficient control sets.
The choice among these sets should be done in favor of those which will not corrupt the performance
of the minimization algorithm.

The implementation of the method is matrix-free, hence it could be suitable for high-dimensional
problems. Furthermore, if the Automatic Differentiation is used for producing the tangent linear
and adjoint mappings, then the method could be applied to any multi-input black-box system. The
method has been implemented with the full Saint-Venant hydraulic network model SIC2 (Simulation
and Integration of Control for Canals) developed at IRSTEA-Montpellier [S33].

3.4.2 Goal-function error in an observed system

Let us consider data assimilation problem formulated in §1.1. In practice, some functionals of the state
are of major interest. They are usually called the Quantities of Interest (QoI). Thus, we introduce a
vector of QoI, or the goal-function Ψ = {Ψi, i = 1, . . . ,KΨ} ∈ D, such that

Ψ = D(X), (3–80)

where D is a ’design’ space and D : X → D is a linear or nonlinear mapping. Because of the prediction
error δX there exists the goal-function error

δΨ = D(X) −D(X̄) = D(M(U))−D(M(Ū )). (3–81)

This error represents uncertainty in X in a practically valuable way.
In many circumstances the level of the goal-function error δΨ which corresponds to the prior

guess U = U∗ is not acceptable. The aim of data assimilation is to obtain Û = U |Y ∗, i.e. an
estimate of U conditioned on observations Y ∗, which should be better than the prior U∗ in the sense
‖Û − Ū‖ < ‖U∗ − Ū‖. We shall consider the system as fully/partially identifiable if the goal-function
error

δΨ = D(M(Û ))−D(M(Ū)) (3–82)

falls (fully/partially) into the margins defined by certain practical requirements.
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Let us consider the goal-function error. For small errors equation (3–82) can be linearized as
follows:

δΨ = D′
X(X̄)M′

U (Ū )δU. (3–83)

The error δU is not known by itself, but we may know its statistical properties. Let us assume, for
example, that E[δΨ] = 0. Then, the goal-function error covariance is given by

Pd := E[δΨδΨT ] = D′
X(X̄)M′

U (Ū)PδU (M′
U (Ū ))∗(D′

X(X̄))∗. (3–84)

This covariance quantifies the uncertainty in Ψ. In particular, the square roots of its diagonal elements
describe the confidence interval for δΨ. For an unobserved system PδU in (3–84) is equal to the back-
ground (prior) covariance B, whereas for an observed system (i.e. after estimation/data assimilation),
the uncertainty in U is given by the estimation error covariance, i.e. PδU = P .

Remark 1. In the above considerations the perfect model is assumed. This allows us to write
X̄ = M(Ū ) and, subsequently, Ȳ = G(Ū ). What if the model is not perfect? Let us consider, for
example, a dynamic system

∂ϕ

∂t
= F(ϕ), t ∈ (0, T ), ϕ|t=0 = u, (3–85)

where F is a true spatial operator. This system is described by a model

∂ϕ

∂t
= F (ϕ), t ∈ (0, T ), ϕ|t=0 = u, (3–86)

where F is an approximation (both in terms of physics and discretization) to F . It is easy to see that
the exact behavior of the system (3–85) can be modeled by equation

∂ϕ

∂t
= F (ϕ) + µ, t ∈ (0, T ), ϕ|t=0 = u,

where µ = F(ϕ) − F (ϕ) is the model error. Most certainly µ is not available for direct modeling,
however, if considered as a part of the extended control vector U = {u, µ}, it allows the mapping F
to be considered ’perfect’. In this case the approach presented below is also applicable.

3.4.3 Goal-function error covariance for partial control

The theory considered so far is known and can be found in the literature (possibly, in a fragmented
form). In what follows we present a new theory and a new implementation approach. That is, we have
previously considered DA when the control vector U includes the full set of uncertainty-bearing model
inputs. In practice, only a few selected inputs could be included (the active set), with the remaining
inputs being fixed at their priors (the passive set).

Let us define the active set of the full input vector Ua ∈ A, its true value Ūa ∈ A and the active
set prior U∗

a = Ūa + εa ∈ A. Then Up = U \ Ua, Ūp = Ū \ Ūa and U∗
p = Ūp + εp = U∗ \ U∗

a ,
respectively. Let us assume that the background error covariance B is block-diagonal, i.e. errors εa
and εp are not correlated. This is often the case naturally if the active and passive sets include different
variables, otherwise the DA problem can be re-formulated in terms of uncorrelated variables. Thus,
the covariance B has the following structure:

B =

(
Ba 0
0 Bp

)
,

where Ba = E[εaε
T
a ] and Bp = E[εpε

T
p ] are the sub-matrices which correspond to the active and

passive sets. The goal-function error covariance Pd is given by formula (3–84). It depends on the
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estimation error covariance PδU , which must now correspond to a chosen decomposition of the full
input set. Thus, PδU is defined in the rest of this section.

The DA problem involving the active control set consists of minimizing the cost function

J(Ua) =
1

2
‖R−1/2(G(Ua, U

∗
p )− Y ∗)‖2Y +

1

2
‖B−1/2

a (Ua − U∗
a )‖2A. (3–87)

Thus, the estimate Ûa is obtained from the optimality condition

J ′
Ua
(Ûa) = 0.

Given the above operator definitions in (1–8) and (1–9), the gradient of J(Ua) can be expressed in the
form:

J ′
Ua
(Ua) = (G′

Ua
(Ua, U

∗
p ))

∗R−1(G(Ua, U
∗
p )− Y ∗) +B−1

a (Ua − U∗
a ), (3–88)

thus the estimate Ûa must satisfy the operator equation

(G′
Ua
(Ûa, U

∗
p ))

∗R−1(G(Ûa, U
∗
p )− Y ∗) +B−1(Ûa − U∗

a ) = 0. (3–89)

Let us consider an estimation error δUa = Ûa − Ūa. We notice that δUp = U∗
p − Ūp = εp. Then we

obtain

G(Ûa, U
∗
p )− Y ∗ = G(Ûa, U

∗
p )− (G(Ūa, Ūp) + ξ) = G′

Ua
(Ũa, U

∗
p )δUa +G′

Up
(Ūa, Ũ

∗
p )εp − ξ,

where Ũa = Ūa + τ1δUa, Ũ
∗
p = Ūp + τ2εp, τ1,2 ∈ [0, 1] and

Ûa − U∗
a = (Ûa − Ūa)− (U∗

a − Ūa) = δUa − εa.

Then equation (3–89) yields the error equation

(G′
Ua

(Ûa, U
∗
p ))

∗R−1(G′
Ua
(Ũa, U

∗
p )δUa +G′

Up
(Ūa, Ũ

∗
p )εp − ξ) +B−1

a (δUa − εa) = 0. (3–90)

Using the first order approximations Ûa = Ũa ≈ Ūa and Ũ∗
p = U∗

p ≈ Ūp we express δUa as follows:

δUa ≃ H−1
a (Ū)((G′

Ua
(Ū ))∗R−1ξ +B−1

a εa − (G′
Ua
(Ū ))∗R−1G′

Up
(Ū )εp), (3–91)

where
Ha(Ū) = (G′

Ua
(Ū))∗R−1G′

Ua
(Ū) +B−1

a (3–92)

is the Hessian of an auxiliary control problem formulated for the active control set.
Since the full input vector error after DA is

δU = (δUa, εp)
T , (3–93)

its covariance takes the form

PδU = E[δUδUT ] =

(
PδUa

PδUap

PδUpa
Bp

)
, (3–94)

where
PδUa

= E[δUaδU
T
a ] = H−1

a +H−1
a (G′

Ua
)∗R−1G′

Up
Bp(G

′
Up
)∗R−1G′

Ua
H−1

a , (3–95)

PδUap
= E[δUaε

T
p ] = −H−1

a (G′
Ua
)∗R−1G′

Up
Bp, (3–96)

PδUpa
= E[εpδU

T
a ] = −Bp(G

′
Up
)∗R−1G′

Ua
H−1

a . (3–97)

All operators in (3–95)-(3–97) are taken at the point Ū . The error covariance (3–94) must be used
in (3–84) for computing the goal-function error covariance in case of partial control. Numerical tests
show that using cross-terms PδUap

and PδUpa
is absolutely vital for the method.
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3.4.4 Implementation and performance assessment procedure

Let us first consider the formula for computing Pd (3–84). The product Pd · v, ∀v ∈ D can be used for
the eigenvalue analysis of matrix Pd. That is, its Kd largest eigenvalues λd,i and the corresponding
eigenvectors Wd,i can be computed by the Lanczos method and used for constructing the limited-
memory representation of Pd in the form

Pd =

Kd∑

i=1

λd,iWd,iW
T
d,i. (3–98)

If the elements of vector δΨ are strongly correlated, the number of eigenpairs required for meaningful
representation of Pd (and its diagonal elements, in particular) could by surprisingly small as compared
to KΨ (the dimension of vector Ψ). The same is true for the number of Lanczos iterations needed for
evaluating those eigenpairs.

The products D′
X(X̄)M′

U (Ū ) · v, ∀v ∈ U and (M′
U (Ū ))∗(D′

X(X̄))∗ · v, ∀v ∈ D are computed by
calling the tangent linear and adjoint models of the corresponding mappings D and M. Thus, we
have to define PδU · v, ∀v ∈ U . This is done in below.

Proposition 1. Consider the projected Hessian in the form (2–10), which has the following par-
tition:

H̃ = (B1/2)∗HB1/2 =

(
H̃a H̃ap

H̃pa H̃p

)
. (3–99)

Then, the blocks of matrix PδU can be expressed via blocks of H̃

PδUa
= B1/2

a H̃−1/2
a (Ia + H̃−1/2

a H̃apH̃paH̃
−1/2
a )H̃−1/2

a (B1/2
a )∗, (3–100)

PδUap
= −B1/2

a H̃−1
a H̃ap(B

1/2
p )∗, (3–101)

PδUpa
= −B1/2

p H̃paH̃
−1
a (B1/2

a )∗. (3–102)

For v = (va, vp)
T , we obtain

PδU · v =

(
PδUa

· va + PδUap
· vp

PδUpa
· va +Bp · vp

)
, (3–103)

where the operators PδUa
, PδUap

and PδUpa
are defined in (3–100)-(3–102). Implementation of the

above formulas requires, in turn, the products H̃pa · va, H̃ap · vp and H̃γ
a · va for γ = −1,−1/2. These

can be defined given the eigenpairs {λi,Wi}, i = 1, . . . ,K of H̃.

Proposition 2. Let Nd be the total number of all feasible active sets constructed from the full set
of model inputs U , and n - a running active set index. Then, the performance assessment procedure
consists of the following steps:

Algorithm 1

1. compute by the Lanczos method and store in memory:

{λi,Wi}, i = 1, . . . ,K of H̃(Ū) in (2--10)

2. for n = 1, . . . , Nd

a. compute by the Lanczos method and store in memory:

{λa,i,Wa,i}, i = 1, . . . ,Ka of H̃
(n)
a (Ū) defined via {λi,Wi}

b. compute by the Lanczos method and store in memory:
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{λ(n)d,i ,W
(n)
d,i }, i = 1, . . . ,Kd of P

(n)
d defined in (3--98), using P

(n)
δU · v in (3--103)

end n

Remark 2. Step 1 of the Algorithm enables H̃a · va, H̃pa · va and H̃ap · vp to be evaluated when
necessary. After step 2a, for any chosen active control set we are able to compute Hγ

a · va and, cor-
respondingly, PδU · v using (3–103). At steps 1 and 2b we solve the sequence of the tangent linear
and adjoint models, which is, in case of using models based on partial differential equations, the most
expensive part in terms of the CPU time. Step 2a requires algebraic computations only. The diagonal

elements of P
(n)
d can be retrieved on the basis of representation (3–98). Square roots of these elements

(standard deviation) are the sought outcome of the algorithm above.

Remark 3. The outcome of the Algorithm 1 is a set of P
(n)
d , n = 1, . . . , Nd, each being de-

fined in the limited-memory form via its eigenpairs {λ(n)d,i ,W
(n)
d,i }, i = 1, . . . ,Kd. Based on P

(n)
d the

active sets can be ranked and the sufficient (in terms of the accuracy) sets can be chosen. The choice
between sufficient sets has to made considering other criteria.

3.4.5 Illustration

Here we present an example from river hydraulics. Estimating river discharges from in-situ and/or
remote sensing data is a key component for evaluation of water balance at local and global scales and
for water management. A distinctive feature of the river discharge estimation problem is the likely
presence of significant uncertainty in parameters defining basic properties of a hydraulic model, such
as bathymetry (surface topography), friction, infiltration level, etc. There are also unaccounted lateral
tributaries/offtakes and storage areas. Since the discharge estimation problem is considered, the active
set must undoubtedly include the inflow discharge at a chosen upstream location (the inlet). Would
it be a sufficient control set? If not, what other model inputs should be included into the active set
to reduce the impact of uncertainties? Do we have enough data? Indeed, in-situ measurements of
water elevation and discharge are relatively rare on most rivers because of limited accessibility and
associated costs, whereas the satellite data can be sparse in time and far less accurate. Therefore,
designing the control set is a key issue for solving the river discharge estimation problem.

Here we consider one reach of a river, which is discretized in space giving a set of nodes with
longitudinal abscissas xi, i = 1, . . . , N . At each node a hydraulic cross-section Si is defined by a set of
points on a plane ~nk · (~r−~rk) = 0 describing the bed profile, which are evaluated from a design sketch
or from a topographical survey. For each section this data allows us to compute for any given water
level line Z: the wetted area function A(Z, pg), the wetted perimeter function P (Z, pg), the hydraulic
radius function R(Z, pg) and the top width function L(Z, pg), where pg are geometric parameters of
the corresponding cross-section. For a given reach, pg is a function of x. For a ’regular’ section, the
shallow water flow in the longitudinal direction x is described by the Saint-Venant equations:

∂A

∂t
+
∂Q

∂x
= QL, (3–104)

∂Q

∂t
+
∂Q2/A

∂x
+ gA

∂Z

∂x
= −gASf + CkQLv, (3–105)

t ∈ (0, T ],

where Q(x, t) is the discharge, Z(x, t) is the water level, v(x, t) = Q/A is the mean velocity, QL(x, t)
is the lateral discharge, Ck(x) is the lateral discharge coefficient and Sf is the friction term dependent
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on the Strickler coefficient Cs(x) and on the hydraulic radius R(Z, pg):

Sf =
Q|Q|

C2
sA

2R4/3
.

For the upstream nodes we usually use the inflow discharge Q(t), whereas for the downstream node
it is the rating curve Q = f(Z, prc), where prc are the rating curve parameters.

Let us assume that we are looking for discharge Q(t) under uncertainties in geometric parameters
pg and in the Strickler coefficient Cs(x), whereas all other parameters of the model (3–104)-(3–105) are
known precisely. The particular geometric parameters include the local bed elevation zb(x) and the
lateral dilation coefficient b(x). The latter scales uniformly a given cross-section geometric dimensions
in width. Then, the full control vector U ∈ U looks as follows:

U = (Q(t), Cs(x̄), zb(x̄), b(x̄), U∗)
T , x̄ = (x1, . . . , xN )T , (3–106)

where U∗ stands for all remaining model inputs which contain no uncertainty. The above hydraulic
equations are implemented in SIC2, which is the full nonlinear Saint-Venant hydraulic network model.
The routine which maps U into Y represents operator G. The tangent linear model (TLM) and the
adjoint model, which represent operators G′ and (G′)∗, respectively, are produced by means of the
AD engine TAPENADE [S20] applied to the main computational routine of the SIC2 package (the
forward model).

Let us assume that the water surface elevation Z(x, t) is measured at the specified sections

Y = C(Z,Q) = {Z(xi, t), i ∈ Io}, (3–107)

where Io is the array of indices of the sections where the measurements are available. The goal-
functions (QoI) are usually some functionals of the state trajectory. In hydraulics, certain quantities
useful in the flood risk assessment may be of interest, such as the maximum water surface elevation
above a given (safe) threshold at some locations, for example. Thus, we consider the goal-function in
the form

Ψ = D(Q(x, t), Z(x, t)) = (ΨQ(x),ΨZ(x))
T ,

where

ΨQ(x) =

∫ t2

t1

|Q(x, t)−Q∗(x)|dt, ΨZ(x) =

∫ t2

t1

|Z(x, t)− Z∗(x)|dt, (3–108)

where Q∗ and Z∗ are some reference discharge and elevation levels, and t1, t2 define the time window
of interest. Thus, the covariance matrix Pd includes two blocks Pd[Q] and Pd[Z], associated with
different goal-functions (QoI) in (3–108); the corresponding standard deviation vectors are denoted
σd[Q] and σd[Z]. All results below are presented in terms of σd[·].

Here we consider the following active control sets:
cc0 - no control case, i.e. Ua = {∅};
cc1 - full control case: i.e. Ua = U \ U∗;
cc2 - partial control case: inflow discharge only, i.e. Ua = Q(t);
cc3 - partial control case: inflow discharge and bed elevation, i.e. Ua = (Q(t), zb(k))

T ;
cc4 - partial control case: inflow discharge and Strickler coefficient, i.e. Ua = (Q(t), Cs(k))

T .
In the ’no control case’ Pδu = B.

These figures reveal the following interesting features:
1. In the full control case cc1, the posterior standard deviations are strictly smaller than the back-
ground values, compare the curves marked cc1 to those marked cc0. This difference is usually referred
as the ’uncertainty reduction’. The curves marked cc1 show the minimum level of σd[·] that can be
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Figure 3.5: Standard deviation of the goal-vector (QoI).

achieved with the available observations. Since estimating the discharge is the major task, let us pay
attention to Fig.3.5(left). For the partial control case cc2 (the inflow discharge control only), σd[·] are
presented in dashed lines. One can see that the uncertainty reduction achieved in this case makes only
a fraction (30-40%) of the one achieved in the full control case. Thus, controlling the discharge only
is hardly sufficient.
2. The control set can be extended, however this must be done with caution. It seems reasonable
to add such control variable that the resulting uncertainty in the goal-function (QoI) would be most
essential. At the same time this extension should not affect the reliability of the minimization process.
By comparing results for different active control sets one can see that such component does exist: it
is the bed elevation zb, see the results in dash-dotted line, case cc3. For comparison we also present
the partial control case cc4, where instead of zb we use Cs. One can notice that, in terms of σd[·],
the effect of inclusion Cs into the active set is negligible. Some improvement can be seen in terms of
σd[Z] in the vicinity of sensors. It has been repeatedly observed that including both zb and Cs into
the active control set leads to unsupported combinations of controls, see [A6]. Thus, the sufficient
control set is given by vector Ua = (Q(t), zb(k))

T .

3.4.6 Conclusions

In this section we describe the control set design concept, which offers an additional direction in design
of DA systems. Indeed, it is more usual to talk about design of observations. More generally, one could
talk about optimal experimental design, which also includes the possibility to influence the system
behavior. In hydraulics this can be done using operational devices (gates, weirs, etc). The need for the
control set design step arises in solving DA problems for models with multiple heterogeneous inputs
containing significant uncertainties. In one hand, it looks appealing to include all the uncertainty-
bearing inputs into the (active) control set. On the other hand, there are different reasons against
such a straightforward approach. Some of them are discussed in the beginning of this section. In order
to design the control set one must be able to quantify its performance in terms of the uncertainty
level in specially chosen goal-functions (QoI). Those sets for which this level is acceptable from the
practical point of view are called ’sufficient’. Technically, the method is a generalization of the standard
variational UQ method in a sense that the full set of the uncertainty-bearing model inputs is divided
into the active and passive sets, each affecting the goal-function uncertainty covariance in different

69



ways. The implementation is ’matrix free’ in the sense that the limited-memory representations of
the operators are used. These are constructed by means of the Lanczos procedure. Because of this,
the method may be suitable for high-dimensional problems, though it still depends on the eigenvalue
distribution of the operators involved. Let us note that the variational UQ method is only valid for
mildly nonlinear models.

3.4.7 Future developments

There are two directions of an immediate future development. First of all, the presented control set
design approach can be easily extended to include the ’idle’/implicit control option (see §3.3), i.e.
the full set of model inputs U can be divided into the ’active’, ’idle’ and ’passive’ subsets (currently
’active’ and ’passive’ only). This extension is rather straightforward.

The idea of another development is outlined below. One can conclude from the the results of
the previous section that controlling the bed elevation zb(x) allows the uncertainties in other model
parameters (the Strickler coefficient Cs(x) and the dilation parameter b(x)) to be successfully ab-
sorbed. This shows that the control set design procedure should not be limited to a choice of optimal
combinations of the model input parameters. In more general terms, the control design task can be
formulated as follows:
find control which guaranties that the model has sufficient degrees of freedom, so its
trajectory can be driven, up to a given discrepancy level, toward observations.

Here we present the theory of a generalized control set design procedure. Let us introduce auxil-
iary inputs V ∈ V, where V is an auxiliary input space, and re-define the model input as follows

U → U + S(V ). (3–109)

Here S : V → U△, where U△ ⊆ U is a mapping from the auxiliary space into the chosen subset of
the original full input set (inverse to S may not exist). By V̄ and V ∗ we denote the ’true’ and the
background values of V , respectively. It is most important to realize that, since V does not originally
exist in U , then V̄ = V ∗ = 0. We shall call V - the ’integrated controls’.

Let us now define U = (U, V )T - the generalized input vector, Y = G(U) = G(U, V ) - the ’input-
to-observations’ mapping. As before Ȳ = G(Ū) = G(Ū , 0) - ’true’/exact observations and Y ∗ = Ȳ +ξ.
Then, we can formulate the DA cost-function as follows:

J(U) = J(U, V ) =
1

2
‖R−1/2(G(U, V )− Y ∗)‖2Y +

1

2
‖B−1/2(U − U∗)‖2U +

1

2
‖B−1/2

V V ‖2V , (3–110)

where
BV = S′∗

V (0)B△S
′
V (0).

Now, we are going to consider U as passive control (i.e. fix U at its background value) and investigate
how the error δU = U∗− Ū = ε is absorbed by V . To this end we formulate the following DA problem

J(U) = J(U∗, V ) =
1

2
‖R−1/2(G(U∗, V )− Y ∗)‖2Y +

1

2
‖B−1/2

V V ‖2V ,→ inf
V
. (3–111)

Our task now is to obtain the expression for the estimation error δV = V̂ − V̄ = V̂ . Here we follow
the logic of §3.4.3. The optimality condition for V̂ reads

J ′
V (U

∗, V̂ ) = 0.
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The optimality condition yields the estimator equation

G′∗
V (U

∗, V̂ )R−1(G(U∗, V̂ )− Y ∗) +B−1
V V̂ = 0,

and, subsequently, the error equation

G′∗
V (U

∗, V̂ )R−1
(
G′

V (U
∗, Ṽ )V̂ +G′

U (Ũ , 0)δU − ξ
)
+B−1

V V̂ = 0 (3–112)

where Ṽ = τ1V̂ , Ũ = τ2(U
∗ − Ū), τ1,2 ∈ [0, 1]. From (3–112) we obtain

V̂ = HV
−1(Ū , 0)G′∗

V (Ū , 0)R
−1(ξ −G′

U (Ū , 0)δU), (3–113)

where
HV (·, ·) = G′∗

V (·, ·)R−1G′
V (·, ·) +B−1

V . (3–114)

Consider the goal-function (QoI) in the form (3–81). For the goal-function error one can write

δΨ = D(M(U∗, V̂ ))−D(M(Ū , 0)) = D′
X(X̄)

(
M′

V (Ū , 0)V̂ +M′
U (Ū , 0)δU

)
. (3–115)

Subsequently, for small δU = (δU, V̂ )T = (ε, V̂ )T , the covariance of δΨ is defined as

Pd := E[δΨδΨT ] = D′
X(X̄)M′

U(0, Ū ) PδU (M′
U(0, Ū ))∗(D′

X(X̄))∗, (3–116)

where

PδU = E[δUδUT ] =

(
E[εεT ] E[εV̂ T ]

E[V̂ εT ] E[V̂ V̂ T ]

)
. (3–117)

Consider HU - the Hessian of the auxiliary cost-function associated with (3–110), and BU - the
background covariance of δU. These have the following block-structure:

HU =

(
HU HUV

HV U HV

)
, BU =

(
B 0
0 BV

)
.

Then, the blocks of the covariance matrix (3–117) can be expressed via the blocks of the Hessian HU

as follows:
E[εεT ] = B,

E[V̂ V̂ T ] = H−1
V −HV

−1
(
B−1

V −HUVBHV U

)
HV

−1,

E[εV̂ T ] = −BHUVHV
−1,

E[V̂ εT ] = −HV
−1HV UB.

This Hessian can be known in the limited-memory form

Hγ
U
(Ū) ≃ B

1/2
U

(
I +

LH∑

i=1

(λγi − 1)WiW
∗
i

)
B

T/2
U

.

As before, the error covariance (3–117) must be used in (3–116) for computing the leading eigenpairs
of the goal-function error covariance. Let us mention that our derivation essentially replicates the one
described in §3.4.3, but for an extended input vector.

The presented approach provides a general tool for assessing the performance of any chosen control
set. It may include those ones which do not match the original model inputs. For example, it can
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be a combination of the original control inputs, i.e. invariants, such as characteristic variables at
’open’/’liquid’ boundaries of local fluid flow models. It can also be a small subset of a high-dimensional
input, such as distributed source term (model error) η(x, t). In particular, when considering η(x, t̄),
where t̄ represents a few chosen time instants, one replicates the sub-window technique for the model
error treatment suggested in [S46]. When considering η(x̄, t), where x̄ represents the observation
points, one replicates the optimal nudging technique described in [S52]. Let us note that no sensible
error assessment for these two methods have ever been reported, though both methods are currently
used in operational forecasting.

72



Chapter 4

Advanced numerical approaches for
computing inverse Hessian

4.1 Computing of the inverse Hessian: multigid approach

4.1.1 Introduction

The importance of the Hessian matrix and its inverse in variational DA for geophysical applications
is underlined in [S44], although, for decades, this has been a routine knowledge in statistics (see, for
example, [S42]). Some relevant applications of the inverse Hessian are highlighted in §1.2.5. These
applications involve either solving multiple systems of linear equations involving H, or having access to
the inverse operator H−1. In practice, an explicit discrete representation of H is never required, since
the Hessian-vector product can be obtained by successively applying operators in formula (1–21). The
development of feasible methods for generation, storage and subsequent use of H−1 or H−1/2 in this
framework are not well understood: this is the prime motivation for our interest in the development of
efficient algorithms for computing and managing the inverse Hessian, such as those presented in [A4].

A special feature of working with the Hessian for very high-dimensional problems is that neither the
Hessian nor its inverse can be directly accessed in matrix form. While the Hessian-vector product can
be computed by solving a sequence of the tangent linear and adjoint problems, no such option exists for
defining the inverse Hessian-vector product (or the inverse square root Hessian-vector product, which
is also relevant in many applications). One obvious approach is therefore to consider limited-memory
schemes for computing and storing the inverse Hessian (or its square root). In this context, the idea
of a multilevel framework becomes relevant. This is due to the fact that the inverse Hessian is, in
essence, an approximation of the posterior covariance matrix and, if the initial flow field is considered
as a spatially distributed control, then the correlations of different lengths between the flow field values
can be described at different levels of spatial discretization.

Multigrid methods were initially developed for solving elliptic partial differential equations (PDEs)
and have since been extended for solving PDEs of different types. One key modern area of application
of multigrid methods is in solving PDE-constrained optimization or inverse problems, see the review
paper [S7]. Here the multigrid solver is applied directly to the optimality system, which includes the
original model, its adjoint and the optimality condition. Some elements of the multigrid approach have
been utilized previously in variational data assimilation algorithms in meteorology and oceanography,
but a complete multigrid algorithm has been considered only recently in [S14]. Multigrid methods
can also used for solving eigenvalue problems, which is most relevant to the method described in this
section. The usual multigrid approach in this context is to treat the eigenvalue problem as a non-linear
equation and apply a non-linear multigrid solver [S10, S24]. Alternatively, an outer eigenvalue solver
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such as Rayleigh quotient iteration can be employed, which requires the solution of systems of linear
equations with a shifted coefficient matrix using multigrid as an inner solver [S40]. A third approach
uses a standard eigenvalue solver (such as Lanczos or Arnoldi) with multigrid as a preconditioner.
This type of method is reviewed in [S27].

In this section we describe a general multilevel eigenvalue decomposition of a given symmetric
operator. Given its spectral decomposition, an operator A, say, can be approximated by a finite
number of its eigenvalues and eigenvectors. To achieve a desired approximation quality (in terms of
a specified distance between the exact and approximated operators) a certain number of eigenpairs
must be used, dependent on the eigenvalue distribution. However, for high-dimensional problems,
the computationally feasible number of eigenpairs (in terms of available storage, for example) may be
too small to achieve any useful approximation quality. Thus, a single level eigenvalue decomposition
approach has its limitations. Our proposed multilevel eigenvalue decomposition algorithm involves an
outer multilevel loop that provides an incomplete eigenvalue decomposition (using Lanczos) of the
operator at each level, resulting in a final approximation involving eigenpairs associated with each
discretization level. Note that, if A is not symmetric, the same technique could be applied to ATA.

The multilevel technique described in §4.1.2 allows us to build limited-memory approximations
to A−1 and A−1/2 which, within a fixed memory framework, are much better than their single-level
spectral counterparts. These approximations could be used in many situations, for example, as pre-
conditioners for solving systems of linear equations, across multiple application areas. In [A4], we use
the technique as an efficient way of approximating the inverse Hessian in variational data assimila-
tion. We also introduce a second idea, namely, decomposition of the Hessian into local sensor-based
Hessians. Although this is distinct from the multilevel eigenvalue decomposition, the latter provides
a framework for its practical implementation.

4.1.2 Multilevel eigenvalue decomposition algorithm

In this section we describe an algorithm for constructing a multilevel approximation to the inverse
(and its square root) of a general symmetric positive definite operator A associated with a model
M based on partial differential equations, e.g. H̃(·) in (2–10). The key idea can be summarized as
follows. Consider a limited-memory approximation to Aβ of the form in (2–15) (with β = −1). If we
assume that A is only available in operator-vector product form, that is, we can evaluate Av for some
discrete function v on the underlying computational grid, the eigenvalues required can be calculated
using the Lanczos method. Given a sequence of nested grids, a conceptual outline of the recursive
multilevel process is as follows:

1. represent A on the coarsest grid level;

2. use a local preconditioner to improve the eigenvalue distribution;

3. build a limited memory approximation to its inverse, which forms the basis of the local precon-
ditioner at the next coarsest level;

4. move up one grid level and repeat.

As proof of concept, we describe the ideas in a one-dimensional setting. However, the concept is
equally valid for two- and three-dimensional problems.
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Multilevel grid structure

We consider the spatial domain Ω = [0, 1] and construct a sequence of grids for discretizing the model
M. We suppose that the base grid on which the problem is defined has a uniform distribution of
m0 = m + 1 grid points, and use this as our finest grid (denoted by grid level k = 0). We form the
next grid by removing a grid point from in between each pair of existing points, to give a grid at level
k = 1 with m1 = m/2 + 1 uniformly-spaced points. Continuing this refinement leads to a sequence of
grids at levels k = 0, 1, 2, . . . , kc (where kc is the coarsest grid level), with the grid at level k containing
mk = m/2k + 1 grid points.

Grid transfer operators

We introduce the prolongation operator Sk,k−i, 0 ≤ i ≤ k, which maps (interpolates) a discrete
function vk defined at grid level k to a finer grid level k − i (or to the same grid for i = 0). That is,
the operator satisfies

vk−i = Sk,k−i vk, Sk,k = Ik, (4–1)

where Ik is the identity operator at grid level k. Similarly, the restriction operator S∗
k,k−i maps a

discrete function vk−i defined at grid level k − i to a coarser grid level k. That is,

ṽk = S∗
k,k−i vk−i, S∗

k,k = Ik, (4–2)

where S∗
k,k−i is the adjoint operator to Sk,k−i. Combining operators (4–1) and (4–2) gives ṽk =

S∗
k,k−iSk,k−i vk, so ṽk = vk only if

S∗
k,k−iSk,k−i = Ik. (4–3)

In other words, for ṽk = vk we require Sk,k−i to be an orthonormal projection: we will refer to this
situation as perfect interpolation.

Proposition 1. Let Ak be a discrete representation of A defined at grid level k. Then, the pro-
jection of Ak at a finer grid level k − i, 0 ≤ i ≤ k is given by

Pk−i(Ak) = Sk,k−i(Ak − Ik)S
∗
k,k−i + Ik−i, 0 < i ≤ k, (4–4)

Pk(Ak) = Ak,

and the projection of an operator Ak−i at a coarser grid level k, 0 ≤ i ≤ kc is given by

Qk(Ak−i) = S∗
k,k−i(Ak−i − Ik−i)Sk,k−i + Ik, 0 < i ≤ kc, (4–5)

Qk(Ak) = Ak.

Proposition 2. Adjoint operators P ∗ and Q∗ satisfy the conditions

P ∗
k−i(Ak) = Pk−i(A

∗
k), Q∗

k(Ak−i) = Qk(A
∗
k−i). (4–6)

Proposition 3. In the case of perfect interpolation the operator Pk−i(Ak) has the important prop-

erty that Pk−i(Ak) = Pk−i(A
1/2
k )Pk−i((A

1/2
k )∗). Also, the expression (4–5) simplifies to Qk(Ak−i) =

S∗
k,k−iAk−iSk,k−i. However, Qk(Ak−i) 6= Qk(A

1/2
k−i)Qk((A

1/2
k−i)

∗).
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Multilevel algorithm: structure

We now develop an algorithm for constructing a multilevel limited-memory representation of A−1 (and
A−1/2) in operator-vector product form, that is, as A−1v or A−1/2v. This is achieved by separating
the eigensystem of operator A into the subsystems associated with different representation levels. We
assume that the operator-vector product is available at the finest grid level k = 0, that is, we have
available A0v0 for some fine grid function v0. Here we describe our algorithm based on a sequence of
coarser grids k = 1, 2, . . . , kc, where kc is the coarsest level. A key ingredient of this algorithm is a
sequence of local preconditioners applied at each grid level.

We begin by representing the finest grid operator A0 on level k as Qk(A0) using (4–5), then
precondition this to obtain

Q̃k(A0) = T ∗
k,k+1Qk(A0)Tk,k+1. (4–7)

The level k preconditioner Tk,k+1 will be chosen so that the eigenvalues of Q̃k(A0) are closer to unity
than those of Qk(A0): details of how this is done follow in §4.1.2. We then use the Lanczos method to
compute a specified number, nk say, of the largest eigenvalues of Q̃k(A0) (measured in a log-squared
sense), together with their associated eigenvectors. The resulting nk eigenpairs {λik,W i

k}, i = 1, . . . , nk,
are then used to construct a limited memory approximation to Q̃k(A0), namely,

Q̂k(A0) = Ik +

nk∑

i=1

(λik − 1)W i
k(W

i
k)

T . (4–8)

Note that, as in (2–15), an approximation to Q̃k(A0) raised to any chosen power β is readily available.

This means that Q̂−1
k (A0), Q̂

1/2
k (A0) and, most importantly for the preconditioners defined in the next

section, Q̂
−1/2
k (A0), are easily computed.

The accuracy of approximation (4–8) is clearly critically affected by the number of eigenvectors
which are calculated and stored at each grid level. To facilitate later investigation of how these values
should be chosen, we introduce the notation

Ne = (n0, n1, . . . , nkc), N̂e =

kc∑

k=0

nk (4–9)

for the vector containing these values for a particular approximation and the sum of its entries.

Level k preconditioners

The algorithm above involves a preconditioner Tk,k+1 for Qk(A0) local to the current grid level. The
motivation for our choice of Tk,k+1 is the assumption that Qk+1(A0) is a good approximation to
Qk(A0), so we can use the projection of the former to grid level k to precondition the latter. That is,
we expect that the eigenvalues of the preconditioned operator

Pk(Q
−1/2
k+1 (A0))Qk(A0)Pk(Q

−1/2
k+1 (A0))

to be clustered around 1. Furthermore, it can be seen from (4–7) and (4–8) that

Q−1
k (A0) = Tk,k+1Q̃

−1
k (A0)T

∗
k,k+1 ≈ Tk,k+1Q̂

−1
k (A0)T

∗
k,k+1 (4–10a)

and so
Q

−1/2
k (A0) = Tk,k+1Q̃

−1/2
k (A0) ≈ Tk,k+1Q̂

−1/2
k (A0). (4–10b)
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Note that with this notation, preconditioner Tk,k+1 is applied on level k, using information projected
from level k + 1.

The above considerations are valid for grid levels k = 0, . . . , kc − 1. On the coarsest grid level
k = kc, grid level kc + 1 does not exist, so we set Tkc,kc+1 = Ikc. Note also that on the finest grid
level k = 0 we can use A0 directly, that is, Q0(A0) ≡ A0. In practice, moving from the coarsest to the
finest grid, we accumulate the eigenpairs {λk,Wk}, k = kc, . . . , 0, in (4–8) which allows us to define

the required products A−1
0 v0 and A

−1/2
0 v0 via a recursive algorithm as follows. At a general grid level

k, the preconditioner is constructed in a recursive way using information from the previous (coarser)
grid levels via

Tk,k+1 =

{
Pk(Tk+1,k+2Q̂

−1/2
k+1 (A0)) k = 0, 1, . . . , kc − 1;

Ikc , k = kc;
, (4–11a)

T ∗
k,k+1 =

{
Pk(Q̂

−1/2
k+1 (A0)T

∗
k+1,k+2), k = 0, 1, . . . , kc − 1;

Ikc, k = kc;
(4–11b)

where

Q̂
−1/2
k (A0) = Ik +

nk∑

i=1

((λik)
−1/2 − 1)W i

k(W
i
k)

∗

(cf. (4–8)).

Summary

Using the above definitions, an operator representing the multilevel eigenvalue decomposition algo-
rithm can be constructed as follows:

Multilevel Eigenvalue Decomposition (MLEVD) Algorithm

[Λ,U ]=MLEV D(A0,Ne)

for k = kc, kc − 1, . . . , 0
compute by the Lanczos method and store in memory:

{λik, U i
k}, i = 1, . . . , nk of Q̃k(A0) in (4--7)

using Tk,k+1 and T ∗
k,k+1 from (4--11)

end

The input to this algorithm is A0 (available in the form of an operator-vector product A0v0 at the finest
level) together with the vector Ne in (4–9) containing the number of eigenpairs to be calculated at
each grid level. At a current level k < kc the algorithm utilizes the eigenpairs obtained at the previous
(coarser) levels. The output is a pair of vectors [Λ0, W0] containing the multilevel eigenstructure of
A0. These vectors can be represented as follows:

Λ0 =
[
λ1kc , . . . , λ

nkc

kc
, λ1kc−1, . . . , λ

nkc−1

kc−1 , . . . , λ
1
0, . . . , λ

n0

0

]
,

W0 =
[
W 1

kc , . . . ,W
nkc

kc
,W 1

kc−1, . . . ,W
nkc−1

kc−1 , . . . ,W 1
0 , . . . ,W

n0

0

]
. (4–12)

Given [Λ0, W0], for any function vk the products Q−1
k (A0)vk and Q

−1/2
k (A0)vk can be recovered using

(4–10a) and (4–10b), involving (4–11). In particular, for any fine grid function v0 we can evaluate

A−1
0 v0 ≈ Q−1

0 (A0) = T0,1Q̂
−1
0 (A0)T

∗
0,1v0, (4–13a)
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A
−1/2
0 v0 ≈ Q

−1/2
0 (A0) = T0,1Q̂

−1/2
0 (A0)v0, (4–13b)

were T0,1 and T ∗
0,1 are defined in (4–11). Using the notation in (4–9), we see that the vector Λ in

(4–12) contains a total of N̂e entries. As the grid at level k contains mk = m/2k +1 points, the vector
U has a total of

kc∑

k=0

nkmk =

(
kc∑

k=0

nk
2k

)
m+ N̂e

entries. In what follows, we use the term ”memory ratio” for the quantity

r =

kc∑

k=0

nk
2k

(4–14)

as this gives a useful estimate of the ratio of the amount of storage required to m (where the finest
grid has m+ 1 points).

We conclude this section by noting that the MLEVD algorithm can be generalized by using
Q̃k(Ak−i) instead of Q̃k(A0) in (4–7), where Ak−i, 1 ≤ i ≤ k is a direct representation of A0 on
grid level k. In particular, for the case of interest here (with A0 ≡ H(u)), we can define H directly on
a given level k using

H̃k(Uk) = Ik +Qk((B
1/2)∗)(G′

k(Uk))
∗Qk(R

−1)G′
k(Uk)Qk(B

1/2), (4–15)

where G′
k(Uk) and (G′

k(Uk))
∗ are the tangent linear and adjoint operators G′

U and (G′
U )

∗ discretized

on level k. Note that, as B
1/2
b and R−1 are defined at the finest grid level, appropriate projections are

still required in (4–15). This approach allows the PDE problems defining the Hessian-vector product
to be solved at any level k − i, while solving the eigenproblem at level k. This may help to reduce
computational time, although the multilevel approximation will become less accurate (given the same
allocated memory).

4.1.3 Hessian decomposition

Here we focus on a specific application for the MLEVD algorithm, namely, the approximation of the
inverse of the projected Hessian matrix (2–10) in variational data assimilation. Before we describe the
specific algorithms proposed, we introduce a decomposition of the Hessian into a set of elementary
Hessians which will prove to be useful later.

Using the factorization
R−1 = R−1/2 Ī R−1/2,

where Ī is the identity on the M -dimensional observation space Y and R−1/2 : Y → Y is a symmetric
square-root of R, the preconditioned Hessian can be rewritten in the form

H̃(U) = I + (B1/2)∗(G′(U))∗R−1/2 Ī R−1/2G′(U)B1/2. (4–16)

Now let I be a set of indices of the diagonal elements of Ī, and suppose that I is partitioned into L
disjoint subsets I l, l = 1, . . . , L. Defining the diagonal matrices Ī l such that

Ī li,i =

{
1, i ∈ I l

0, i /∈ I l , i = 1, . . . ,M,

the identity can be written as

Ī =
L∑

l=1

Ī l.
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Combining this with (4–16), after some algebraic manipulation we obtain a Hessian decomposition as
follows:

H̃(u) = I +

L∑

l=1

(H̃ l(u)− I), (4–17)

where
H̃ l(U) = I + (B1/2)∗(G′(U))∗R−1/2 Ī lR−1/2G′(U)B1/2. (4–18)

For a specific partition of I, each elementary Hessian H̃ l(U) can be presented in the limited-memory
form with the number of leading eigenpairs nl required for its accurate representation. In particular,
it is possible to define a partition of I l such that nl ≈ n/L, with the number of Lanczos iterations
and, correspondingly, the amount of CPU time needed for computing the eigenpairs of a single H l

proportionally reduced. We also note that the elementary Hessians can be computed in parallel, so
that the amount of CPU time required for computing the full limited-memory Hessian should not
exceed the largest time spent on computing a single H̃ l. To define an optimal partition, we may
use the fact that the influence of the observations made by sensors located within a given spatial
subdomain is also spatially localized.

For a Hessian defined directly at a given level k (as per (4–15)), it is easy to see that the local
Hessian decomposition is

H̃k(Uk) = Ik +
L∑

l=1

(H̃ l
k(Uk)− Ik), (4–19)

where
H̃ l

k(Uk) = Ik +Qk((B
1/2)∗)(G′

k(Uk))
∗Qk(R

−1/2 Ī lR−1/2)G′
k(Uk)Qk(B

1/2). (4–20)

For a specific partition of I, powers of each elementary Hessian H̃ l
k(uk) can be approximated in

limited-memory form as

(Hl
k)

β ≃ Ik +

nl
k∑

i=1

((λlk,i)
β − 1)W l

k,i(W
l
k,i)

∗ (4–21)

using the leading nlk eigenpairs {λlk,i,W l
k,i}, i = 1, . . . , nlk, where the length of each eigenvector W l

k,i

is equal to mk.
The calculation of a single local HessianHl

k is a relatively inexpensive task which requires much less
computational time than computing the global projected Hessian because each local Hessian deviates
from the identity operator I only within the area of influence surrounding the subdomain Ωl, with
the size of this area depending on the transport mechanisms supported by the dynamical model. The
number of eigenpairs used to describe this deviation could be relatively small, therefore a smaller
number of Lanczos iterations may also be needed to evaluate the leading eigenvalues of H̃ l

k, with the
corresponding eigenvectors being different from zero only within the local area of influence. Thus, a
compact storage scheme for the eigenvectors can be utilized. To make further computational savings,
the local Hessians Hl

k can be computed at discretization level k = k′ > 0, as opposed to on the finest
grid k = 0. Finally, if the local Hessians are computed in parallel, then a very significant reduction
in computing time can be achieved. Specifically, if the eigenvalue analysis for each H̃ l

k can be carried
out on an individual processor, the time needed for computing all L eigenpair sets will be reduced to
the maximum time taken to compute the eigenpairs of an individual local Hessian. We also observe
that, for computing Hl

k, a local area model rather than the global model has to be run, and it is
also possible that only some sensors from the whole observation array, or from only some areas of the
computational domain, will be of interest so Hl

k need not be calculated for every Ωl: these ideas are
not yet investigated further, but represent a subject for future research.
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4.1.4 Approximating the inverse Hessian

In this section we use the multilevel eigenvalue decomposition in Algorithm 4.1.2 to build various
approximations to the inverse Hessian H̃−1, where H̃ is defined in (4–16). We describe three different
possible algorithms, which may be useful depending on the constraints in place in terms of available
computing time and memory. Some numerical experiments illustrating their relative accuracy and
usefulness in practice are given in §4.1.5.

Algorithm 1

This involves using a straightforward application of the multilevel decomposition in Algorithm 4.1.2

to H̃0, resulting in an eigenstructure [Λ0, W0] which can be used to evaluate H̃−1
0 v0 and H̃

−1/2
0 v0

via (4–13). For a given optimal solution Û0, the Hessian-vector product H̃0v0 is defined by (4–15)
discretized at the finest grid level k = 0. Given the multilevel eigenvalue dimensions Ne, the algorithm
can be outlined as follows:

define Ne

compute [Λ0, U0] = MLEVD(H̃0, Ne)

Algorithm 2

In this approach, we assume that memory restrictions are not important, but that computing time is
limited. To this end we utilize the Hessian decomposition idea as described in §4.1.3. This requires
the choice of L further parameters, nlk, l = 1, ..., L, which determine the number of eigenpairs used in
Hl

k (the limited memory approximation to H̃ l
k in (4–20)). The algorithm can be outlined as follows:

define Ne, level k
′ ≥ 0, partition I l, nlk′, l = 1, . . . , L

for l = 1, . . . , L:
compute {λik′ , U i

k′}l, i = 1, . . . , nlk′ of H
l
k′ in (4–20)

compute [Λ0, U0] = MLEVD(P0(H̃k′), Ne) where H̃k′ is in form (4–19) based on

Hl
k′ from (4–21) instead of H̃ l

k′

end l-loop.

4.1.5 Illustration

In this section we provide some implementation details and report the results of some numerical
experiments from [A4] which illustrate the performance of the algorithms presented in the previous
section. Numerical tests has been performed for the model (2–23). The corresponding flow evolution
is presented in Figure 3.2(left). We consider two different configurations of the sensors which provide
the observations to be assimilated. For this one-dimensional problem, Scheme A has seven stationary
sensors, fixed at points {0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7} in [0, 1]. In Scheme B, there is one moving
sensor which traverses the domain [0, 1] from left to right twice during the observation time. This is
to emulate satellite observations. The multilevel structure comprises four grids, with 401 grid points
on the finest grid level (k = 0) and 51 points on the coarsest grid level (k = 3). We use cubic splines
to implement the prolongation operator Sk,k−i in (4–1), with the subroutine for its adjoint operator
S∗
k,k−i (restriction) again obtained by using automatic differentiation.
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Investigating approximation accuracy

In the first set of experiments, we apply Algorithm 1 described in §4.1.4 to H̃(≡ H̃0) and use the
resulting multilevel eigenvalue decomposition (4–12) to build a low-memory approximation to H̃−1 in
recursive form (4–13), which we will denote by Ĥ−1. To assess the accuracy of our approximations,
we measure the difference between two matrices in terms of the Riemann distance. That is, for two
symmetric positive definite n× n matrices A and B, we define

δ(A,B) =
∥∥ln(B−1A)

∥∥
F
=

(
n∑

i=1

ln2λi

)1/2

, (4–22)

where λi, i = 1, . . . , n are the eigenvalues of B−1A. The Riemann distance can be considered as
a symmetric measure of the difference between two Gaussian probability distributions having equal
modes. Since the inverse Hessian is an approximation of the analysis error covariance matrix, it is very
natural to use this measure in the current context. We will compare matrices after we have applied
the first-level preconditioning: it is easily shown that the Riemann distance remains unchanged on
applying symmetric preconditioning to A and B, so the distance between two symmetric positive
definite matrices in the original and projected spaces is the same.

The accuracy of a given approximation will clearly be dependent on the number of eigenvalues
calculated at each grid level (that is, the choice of Ne = (n0, n1, n2, n3)). Ideally, we would like to be
able to identify the ’optimal’ combination Ne for a given problem but this is non-trivial, particularly as
the definition of optimality is itself dependent on the problem constraints. Here we assume that there
is a fixed memory ratio r (see (4–14)) allowed for a particular problem. Within this fixed-memory
framework, we measure the normalized Riemann distance

D =
δ(H̃−1, Ĥ−1)

δ(H̃−1, I)
(4–23)

where I is an appropriately-sized identity matrix. By evaluating D for approximations constructed
using all possible eigenvalue combinations Ne for a given memory ratio r, we can identify the best
combinations Ne for this fixed memory problem.

Let us consider a particular case. If Ĥ−1 is constructed from 64 eigenpairs of H̃−1 (corresponding
to memory ratio r = 64), a very good approximation with D = 2.98e−4 is achieved. However, if
available memory is restricted to r = 8, so only 8 eigenpairs at level 0 can be stored, the resulting
approximation is very poor (D = 7.71e−1). However, if Ĥ−1 is constructed using the multilevel
eigenvalue decomposition, much better approximations can be achieved.

As stated above, it is difficult to characterize a single ‘best possible’ eigenvalue combination.
However, certain traits can be identified. Plots of the minimum distance achieved for various memory
ratios r are shown in Figure 4.1. In each subplot, the dashed line shows the minimum distance achieved
for a given r, and the solid line shows the average over the 5% of eigenvalue combinations satisfying
(4–14) which resulted in the smallest distances. The dotted line shows the equivalent distance achieved
using only fine grid vectors. The key observation here is that when there is only room to store a small
number of fine grid vectors in memory, using a multilevel approximation clearly gives much better
accuracy. Although we did not identify an ‘optimal’ way of choosing Ne, our experiments did show
that eigenvalue combinations which have no or very few eigenpairs on the finest level(s) appear to
perform best. Based on this, we suggest the ansatz of doubling the number of eigenpairs calculated
at each level (from fine to coarse grids). For example, the combinations which correspond to r = 8
are as follows: Ne = (0, 0, 24, 48) and Ne = (2, 4, 8, 16). The distances achieved using this strategy for
various values of r are displayed in Figure 4.1 using red crosses. Although these combinations do not
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Figure 4.1: Distance D (4–23) plotted against memory ratio r (4–14) for model problems A1 (station-
ary sensors) and B1 (moving sensor).

always give rise to the minimum distance, they usually give reasonable approximations. This doubling
strategy will be adopted in the next section.

Using Ĥ−1 as a preconditioner for Gauss-Newton

Here we illustrate the use of our multilevel approximation to H−1 in a typical application. Specifically,
we recall the case mentioned in §1.2.5 of incremental 4D-Var, where the solution of a system of linear
equations of the form (1–37) with coefficient matrix H has to be approximated at each step of a Gauss-
Newton process. This is typically achieved using a few CG iterations. In realistic DA applications, the
number of Gauss-Newton (outer) iterations as well as the number of CG (inner) iterations is limited
by the time available in the forecast window. More details of approximate Gauss-Newton methods for
large-scale data assimilation problems can be found in [S19].

After first-level preconditioning, system (1–37) being discretized at the finest level k = 0 takes the
form

H0(U
j
0 )δV

j
0 = −(B

1/2
0 )∗G0(U

j
0 ), (4–24)

where δV j
0 = B

1/2
0 δU j

0 . As we are assuming that this preconditioning is always applied, we will refer to
this case as ‘unpreconditioned Gauss-Newton. The convergence of the CG method applied to (4–24)
can be further accelerated by preconditioning the system again using Ĥ−1

0 to improve the resulting
eigenspectrum, in other words, by solving

Ĥ−1
0 (U j

0 )H̃(U j
0 )δV

j
0 = −Ĥ−1

0 (U j
0 )(B

1/2
0 )∗G(U j

0 ).

Here the preconditioner Ĥ−1
0 (U j

k) is computed once per Gauss-Newton step (before iterating with
CG): this is an important difference from the approach presented in [S14], where the multigrid cycle is
applied as a preconditioner for each CG iteration. In what follows, we apply incremental 4D-Var to the
Burgers’ test problem, and investigate the effect of preconditioning using multilevel approximations
H̃−1 built using Algorithms 2 (i.e. involving the Hessian decomposition technique). For the test
case with stationary sensors (Scheme A), each local Hessian Hl

k′ corresponds to one sensor located at
x = xl.
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Figure 4.2: Convergence diagram for MP1.

Preconditioners P2a (Ne = (200, 0, 0, 0)), P2b (Ne = (0, 8, 16, 32)) and P2c (Ne = (0, 4, 8, 16)) use
Algorithm 2 with different values of Ne in the multilevel representation of the inverse Hessian Ĥ−1

0 .
For each elementary Hessian Hl

k′ , the Hessian-vector product is defined at level k′ = 1, m = 201, with
nlk′ = 8 eigenpairs used for its limited-memory representation. For each test case, the DA problem was
solved 25 times with perturbed data, and the resulting ensemble averaged values characterizing the
convergence rate and the solution accuracy are presented in convergence diagrams shown in Figure 4.2.

Each subplot of a diagram shows the averaged deviation norm ‖U j−Û‖2 (where Û = U∞ is the final
estimate Ū), plotted in log10-scale against computational time measured in two different units. These
are the number of the cost-function/gradient evaluations and the number of Hessian-vector product
evaluations (denoted by NG and NHV P , respectively) at the finest discretization level needed to carry
out the whole solution procedure (that is, the cost of constructing and applying any preconditioning is
included in these figures). The former coincides with the actual number of the cost-function/gradient
evaluations, the latter also includes the maximum time spent on evaluating an individual Hl (we
assume that those are evaluated in parallel). The figure demonstrates a very significant acceleration
of the Gauss-Newton process as compared to the unpreconditioned Gauss-Newton.

4.1.6 Conclusions

The inverse Hessian of the auxiliary cost-function (1–22) plays an important part in different aspects
of variational DA. The Hessian-vector product is defined by sequential solution of the tangent linear
and adjoint problems; for the inverse Hessian (or its square-root), no such definition is possible. In
high dimensions, the requirement to work in a matrix-free environment means that compact represen-
tation schemes are of significant interest. The simplest one, based on the eigenvalue decomposition
of the projected Hessian after first-level preconditioning, is however not good enough. Here we have
introduced the novel concept of a multilevel eigenvalue decomposition, which results in a much more
efficient compact representation (supercompact) of the inverse Hessian (and its square root). At a
given level, the eigensystem of an operator preconditioned by its own approximation from the next
coarser level is computed, ascending from the coarsest to the finest level. The numerical results in
§4.1.5 demonstrate that, given a specified memory allowance, the inverse Hessian approximation ac-
curacy is greatly improved as compared to a one-level eigenvalue decomposition scheme. We also
believe that a similar algorithm can be utilized beyond the application considered here, for example,
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for any symmetric operator resulting from the discretization of a PDE, or for image compression and
restoration. In such cases, the resulting low-memory representations of the inverse operator could be
particularly useful for preconditioning in problems with multiple right-hand sides.

We have also considered the application of our compact inverse Hessian approximations as pre-
conditioners for a Gauss-Newton minimization procedure. Here we introduced a further novel decom-
position principle, namely, allowing the Hessian to be represented by the sum of elementary Hessians,
which can be evaluated (and compressed) in parallel. The numerical results in §4.1.5 show that, given
a fixed execution time, a much more accurate approximation can be computed as compared to using
unpreconditioned Gauss-Newton method. The new multilevel method therefore offers an important
parallelisable resource applicable directly to minimization problems.

4.1.7 Future developments

In data science, additional difficulties arise because of the transient and opportunistic nature of the
networks that the data represents. Traditional numerical methods often rely on understanding the
underlying physical principles involved in the process being modelled but, although the science of
complexity and networks is developing rapidly, there is still a long way to go before the understanding
of behavior of modern data networks reaches an equivalent stage. There is therefore a pressing need
to develop new preconditioners to provide suitable tools for tackling these modern applications.

In order to apply our multilevel eigenvalue decomposition method to investigate large sensor net-
works, given that many modern datasets are not associated with any sort of underlying physical grid of
sensors, the effects of replacing some of the traditional geometric multigrid ideas which have been used
to date with ideas from algebraic multigrid should be investigated. These latter methods construct
a hierarchy of operators directly from the system matrix (Hessian) without any geometric interpreta-
tion, so should be well-suited to more flexible modern data networks. The form of the grid transfer
operators used in the geometric multigrid case is such that building equivalent versions for algebraic
multilevel methods should work just as effectively, but this idea needs to be tested.
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